×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Already have an account? Login here
×
Reset your password

Textbooks / Math / Precalculus With Limits A Graphing Approach 5

Precalculus With Limits A Graphing Approach 5th Edition - Solutions by Chapter

Precalculus With Limits A Graphing Approach | 5th Edition | ISBN: 9780618851522 | Authors: Ron Larson Robert Hostetler, Bruce H. Edwards, David C. Falvo (Contributor)

Full solutions for Precalculus With Limits A Graphing Approach | 5th Edition

ISBN: 9780618851522

Precalculus With Limits A Graphing Approach | 5th Edition | ISBN: 9780618851522 | Authors: Ron Larson Robert Hostetler, Bruce H. Edwards, David C. Falvo (Contributor)

Precalculus With Limits A Graphing Approach | 5th Edition - Solutions by Chapter

Solutions by Chapter
4 5 0 324 Reviews
Textbook: Precalculus With Limits A Graphing Approach
Edition: 5
Author: Ron Larson Robert Hostetler, Bruce H. Edwards, David C. Falvo (Contributor)
ISBN: 9780618851522

Precalculus With Limits A Graphing Approach was written by and is associated to the ISBN: 9780618851522. The full step-by-step solution to problem in Precalculus With Limits A Graphing Approach were answered by , our top Math solution expert on 01/17/18, 03:02PM. This textbook survival guide was created for the textbook: Precalculus With Limits A Graphing Approach, edition: 5. This expansive textbook survival guide covers the following chapters: 84. Since problems from 84 chapters in Precalculus With Limits A Graphing Approach have been answered, more than 77943 students have viewed full step-by-step answer.

Key Math Terms and definitions covered in this textbook
  • Basis for V.

    Independent vectors VI, ... , v d whose linear combinations give each vector in V as v = CIVI + ... + CdVd. V has many bases, each basis gives unique c's. A vector space has many bases!

  • Cayley-Hamilton Theorem.

    peA) = det(A - AI) has peA) = zero matrix.

  • Column picture of Ax = b.

    The vector b becomes a combination of the columns of A. The system is solvable only when b is in the column space C (A).

  • Commuting matrices AB = BA.

    If diagonalizable, they share n eigenvectors.

  • Ellipse (or ellipsoid) x T Ax = 1.

    A must be positive definite; the axes of the ellipse are eigenvectors of A, with lengths 1/.JI. (For IIx II = 1 the vectors y = Ax lie on the ellipse IIA-1 yll2 = Y T(AAT)-1 Y = 1 displayed by eigshow; axis lengths ad

  • Hilbert matrix hilb(n).

    Entries HU = 1/(i + j -1) = Jd X i- 1 xj-1dx. Positive definite but extremely small Amin and large condition number: H is ill-conditioned.

  • Inverse matrix A-I.

    Square matrix with A-I A = I and AA-l = I. No inverse if det A = 0 and rank(A) < n and Ax = 0 for a nonzero vector x. The inverses of AB and AT are B-1 A-I and (A-I)T. Cofactor formula (A-l)ij = Cji! detA.

  • Iterative method.

    A sequence of steps intended to approach the desired solution.

  • Length II x II.

    Square root of x T x (Pythagoras in n dimensions).

  • Matrix multiplication AB.

    The i, j entry of AB is (row i of A)·(column j of B) = L aikbkj. By columns: Column j of AB = A times column j of B. By rows: row i of A multiplies B. Columns times rows: AB = sum of (column k)(row k). All these equivalent definitions come from the rule that A B times x equals A times B x .

  • Multiplication Ax

    = Xl (column 1) + ... + xn(column n) = combination of columns.

  • Multiplicities AM and G M.

    The algebraic multiplicity A M of A is the number of times A appears as a root of det(A - AI) = O. The geometric multiplicity GM is the number of independent eigenvectors for A (= dimension of the eigenspace).

  • Multiplier eij.

    The pivot row j is multiplied by eij and subtracted from row i to eliminate the i, j entry: eij = (entry to eliminate) / (jth pivot).

  • Reflection matrix (Householder) Q = I -2uuT.

    Unit vector u is reflected to Qu = -u. All x intheplanemirroruTx = o have Qx = x. Notice QT = Q-1 = Q.

  • Right inverse A+.

    If A has full row rank m, then A+ = AT(AAT)-l has AA+ = 1m.

  • Row space C (AT) = all combinations of rows of A.

    Column vectors by convention.

  • Singular matrix A.

    A square matrix that has no inverse: det(A) = o.

  • Spectral Theorem A = QAQT.

    Real symmetric A has real A'S and orthonormal q's.

  • Triangle inequality II u + v II < II u II + II v II.

    For matrix norms II A + B II < II A II + II B II·

  • Volume of box.

    The rows (or the columns) of A generate a box with volume I det(A) I.