×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 1.4: Shifting, Reflecting, and Stretching Graphs

Precalculus With Limits A Graphing Approach | 5th Edition | ISBN: 9780618851522 | Authors: Ron Larson Robert Hostetler, Bruce H. Edwards, David C. Falvo (Contributor)

Full solutions for Precalculus With Limits A Graphing Approach | 5th Edition

ISBN: 9780618851522

Precalculus With Limits A Graphing Approach | 5th Edition | ISBN: 9780618851522 | Authors: Ron Larson Robert Hostetler, Bruce H. Edwards, David C. Falvo (Contributor)

Solutions for Chapter 1.4: Shifting, Reflecting, and Stretching Graphs

Solutions for Chapter 1.4
4 5 0 237 Reviews
13
1
Textbook: Precalculus With Limits A Graphing Approach
Edition: 5
Author: Ron Larson Robert Hostetler, Bruce H. Edwards, David C. Falvo (Contributor)
ISBN: 9780618851522

Since 74 problems in chapter 1.4: Shifting, Reflecting, and Stretching Graphs have been answered, more than 47940 students have viewed full step-by-step solutions from this chapter. This textbook survival guide was created for the textbook: Precalculus With Limits A Graphing Approach, edition: 5. Precalculus With Limits A Graphing Approach was written by and is associated to the ISBN: 9780618851522. Chapter 1.4: Shifting, Reflecting, and Stretching Graphs includes 74 full step-by-step solutions. This expansive textbook survival guide covers the following chapters and their solutions.

Key Math Terms and definitions covered in this textbook
  • Associative Law (AB)C = A(BC).

    Parentheses can be removed to leave ABC.

  • Block matrix.

    A matrix can be partitioned into matrix blocks, by cuts between rows and/or between columns. Block multiplication ofAB is allowed if the block shapes permit.

  • Column space C (A) =

    space of all combinations of the columns of A.

  • Diagonal matrix D.

    dij = 0 if i #- j. Block-diagonal: zero outside square blocks Du.

  • Dot product = Inner product x T y = XI Y 1 + ... + Xn Yn.

    Complex dot product is x T Y . Perpendicular vectors have x T y = O. (AB)ij = (row i of A)T(column j of B).

  • Ellipse (or ellipsoid) x T Ax = 1.

    A must be positive definite; the axes of the ellipse are eigenvectors of A, with lengths 1/.JI. (For IIx II = 1 the vectors y = Ax lie on the ellipse IIA-1 yll2 = Y T(AAT)-1 Y = 1 displayed by eigshow; axis lengths ad

  • Exponential eAt = I + At + (At)2 12! + ...

    has derivative AeAt; eAt u(O) solves u' = Au.

  • Fourier matrix F.

    Entries Fjk = e21Cijk/n give orthogonal columns FT F = nI. Then y = Fe is the (inverse) Discrete Fourier Transform Y j = L cke21Cijk/n.

  • Full row rank r = m.

    Independent rows, at least one solution to Ax = b, column space is all of Rm. Full rank means full column rank or full row rank.

  • Iterative method.

    A sequence of steps intended to approach the desired solution.

  • Left nullspace N (AT).

    Nullspace of AT = "left nullspace" of A because y T A = OT.

  • Markov matrix M.

    All mij > 0 and each column sum is 1. Largest eigenvalue A = 1. If mij > 0, the columns of Mk approach the steady state eigenvector M s = s > O.

  • Minimal polynomial of A.

    The lowest degree polynomial with meA) = zero matrix. This is peA) = det(A - AI) if no eigenvalues are repeated; always meA) divides peA).

  • Multiplier eij.

    The pivot row j is multiplied by eij and subtracted from row i to eliminate the i, j entry: eij = (entry to eliminate) / (jth pivot).

  • Nullspace matrix N.

    The columns of N are the n - r special solutions to As = O.

  • Polar decomposition A = Q H.

    Orthogonal Q times positive (semi)definite H.

  • Random matrix rand(n) or randn(n).

    MATLAB creates a matrix with random entries, uniformly distributed on [0 1] for rand and standard normal distribution for randn.

  • Rotation matrix

    R = [~ CS ] rotates the plane by () and R- 1 = RT rotates back by -(). Eigenvalues are eiO and e-iO , eigenvectors are (1, ±i). c, s = cos (), sin ().

  • Semidefinite matrix A.

    (Positive) semidefinite: all x T Ax > 0, all A > 0; A = any RT R.

  • Simplex method for linear programming.

    The minimum cost vector x * is found by moving from comer to lower cost comer along the edges of the feasible set (where the constraints Ax = b and x > 0 are satisfied). Minimum cost at a comer!

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password