×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 2: Polynomial and Rational Functions

Precalculus With Limits A Graphing Approach | 5th Edition | ISBN: 9780618851522 | Authors: Ron Larson Robert Hostetler, Bruce H. Edwards, David C. Falvo (Contributor)

Full solutions for Precalculus With Limits A Graphing Approach | 5th Edition

ISBN: 9780618851522

Precalculus With Limits A Graphing Approach | 5th Edition | ISBN: 9780618851522 | Authors: Ron Larson Robert Hostetler, Bruce H. Edwards, David C. Falvo (Contributor)

Solutions for Chapter 2: Polynomial and Rational Functions

Solutions for Chapter 2
4 5 0 239 Reviews
18
2
Textbook: Precalculus With Limits A Graphing Approach
Edition: 5
Author: Ron Larson Robert Hostetler, Bruce H. Edwards, David C. Falvo (Contributor)
ISBN: 9780618851522

This textbook survival guide was created for the textbook: Precalculus With Limits A Graphing Approach, edition: 5. Since 194 problems in chapter 2: Polynomial and Rational Functions have been answered, more than 47661 students have viewed full step-by-step solutions from this chapter. This expansive textbook survival guide covers the following chapters and their solutions. Chapter 2: Polynomial and Rational Functions includes 194 full step-by-step solutions. Precalculus With Limits A Graphing Approach was written by and is associated to the ISBN: 9780618851522.

Key Math Terms and definitions covered in this textbook
  • Associative Law (AB)C = A(BC).

    Parentheses can be removed to leave ABC.

  • Block matrix.

    A matrix can be partitioned into matrix blocks, by cuts between rows and/or between columns. Block multiplication ofAB is allowed if the block shapes permit.

  • Cholesky factorization

    A = CTC = (L.J]))(L.J]))T for positive definite A.

  • Covariance matrix:E.

    When random variables Xi have mean = average value = 0, their covariances "'£ ij are the averages of XiX j. With means Xi, the matrix :E = mean of (x - x) (x - x) T is positive (semi)definite; :E is diagonal if the Xi are independent.

  • Cyclic shift

    S. Permutation with S21 = 1, S32 = 1, ... , finally SIn = 1. Its eigenvalues are the nth roots e2lrik/n of 1; eigenvectors are columns of the Fourier matrix F.

  • Echelon matrix U.

    The first nonzero entry (the pivot) in each row comes in a later column than the pivot in the previous row. All zero rows come last.

  • Free variable Xi.

    Column i has no pivot in elimination. We can give the n - r free variables any values, then Ax = b determines the r pivot variables (if solvable!).

  • Hessenberg matrix H.

    Triangular matrix with one extra nonzero adjacent diagonal.

  • Hypercube matrix pl.

    Row n + 1 counts corners, edges, faces, ... of a cube in Rn.

  • Identity matrix I (or In).

    Diagonal entries = 1, off-diagonal entries = 0.

  • Independent vectors VI, .. " vk.

    No combination cl VI + ... + qVk = zero vector unless all ci = O. If the v's are the columns of A, the only solution to Ax = 0 is x = o.

  • Kronecker product (tensor product) A ® B.

    Blocks aij B, eigenvalues Ap(A)Aq(B).

  • Length II x II.

    Square root of x T x (Pythagoras in n dimensions).

  • Linearly dependent VI, ... , Vn.

    A combination other than all Ci = 0 gives L Ci Vi = O.

  • Nullspace matrix N.

    The columns of N are the n - r special solutions to As = O.

  • Projection matrix P onto subspace S.

    Projection p = P b is the closest point to b in S, error e = b - Pb is perpendicularto S. p 2 = P = pT, eigenvalues are 1 or 0, eigenvectors are in S or S...L. If columns of A = basis for S then P = A (AT A) -1 AT.

  • Projection p = a(aTblaTa) onto the line through a.

    P = aaT laTa has rank l.

  • Spanning set.

    Combinations of VI, ... ,Vm fill the space. The columns of A span C (A)!

  • Toeplitz matrix.

    Constant down each diagonal = time-invariant (shift-invariant) filter.

  • Tridiagonal matrix T: tij = 0 if Ii - j I > 1.

    T- 1 has rank 1 above and below diagonal.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password