×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Already have an account? Login here
×
Reset your password

Solutions for Chapter 9: Circles and Parabolas

Precalculus With Limits A Graphing Approach | 5th Edition | ISBN: 9780618851522 | Authors: Ron Larson Robert Hostetler, Bruce H. Edwards, David C. Falvo (Contributor)

Full solutions for Precalculus With Limits A Graphing Approach | 5th Edition

ISBN: 9780618851522

Precalculus With Limits A Graphing Approach | 5th Edition | ISBN: 9780618851522 | Authors: Ron Larson Robert Hostetler, Bruce H. Edwards, David C. Falvo (Contributor)

Solutions for Chapter 9: Circles and Parabolas

Solutions for Chapter 9
4 5 0 377 Reviews
29
0

Chapter 9: Circles and Parabolas includes 2 full step-by-step solutions. Since 2 problems in chapter 9: Circles and Parabolas have been answered, more than 102470 students have viewed full step-by-step solutions from this chapter. This expansive textbook survival guide covers the following chapters and their solutions. This textbook survival guide was created for the textbook: Precalculus With Limits A Graphing Approach, edition: 5. Precalculus With Limits A Graphing Approach was written by and is associated to the ISBN: 9780618851522.

Key Math Terms and definitions covered in this textbook
  • Adjacency matrix of a graph.

    Square matrix with aij = 1 when there is an edge from node i to node j; otherwise aij = O. A = AT when edges go both ways (undirected). Adjacency matrix of a graph. Square matrix with aij = 1 when there is an edge from node i to node j; otherwise aij = O. A = AT when edges go both ways (undirected).

  • Characteristic equation det(A - AI) = O.

    The n roots are the eigenvalues of A.

  • Complex conjugate

    z = a - ib for any complex number z = a + ib. Then zz = Iz12.

  • Four Fundamental Subspaces C (A), N (A), C (AT), N (AT).

    Use AT for complex A.

  • Free variable Xi.

    Column i has no pivot in elimination. We can give the n - r free variables any values, then Ax = b determines the r pivot variables (if solvable!).

  • Graph G.

    Set of n nodes connected pairwise by m edges. A complete graph has all n(n - 1)/2 edges between nodes. A tree has only n - 1 edges and no closed loops.

  • Iterative method.

    A sequence of steps intended to approach the desired solution.

  • Linear combination cv + d w or L C jV j.

    Vector addition and scalar multiplication.

  • Nullspace matrix N.

    The columns of N are the n - r special solutions to As = O.

  • Orthogonal matrix Q.

    Square matrix with orthonormal columns, so QT = Q-l. Preserves length and angles, IIQxll = IIxll and (QX)T(Qy) = xTy. AlllAI = 1, with orthogonal eigenvectors. Examples: Rotation, reflection, permutation.

  • Orthogonal subspaces.

    Every v in V is orthogonal to every w in W.

  • Pivot.

    The diagonal entry (first nonzero) at the time when a row is used in elimination.

  • Positive definite matrix A.

    Symmetric matrix with positive eigenvalues and positive pivots. Definition: x T Ax > 0 unless x = O. Then A = LDLT with diag(D» O.

  • Projection p = a(aTblaTa) onto the line through a.

    P = aaT laTa has rank l.

  • Reflection matrix (Householder) Q = I -2uuT.

    Unit vector u is reflected to Qu = -u. All x intheplanemirroruTx = o have Qx = x. Notice QT = Q-1 = Q.

  • Right inverse A+.

    If A has full row rank m, then A+ = AT(AAT)-l has AA+ = 1m.

  • Solvable system Ax = b.

    The right side b is in the column space of A.

  • Symmetric factorizations A = LDLT and A = QAQT.

    Signs in A = signs in D.

  • Toeplitz matrix.

    Constant down each diagonal = time-invariant (shift-invariant) filter.

  • Transpose matrix AT.

    Entries AL = Ajj. AT is n by In, AT A is square, symmetric, positive semidefinite. The transposes of AB and A-I are BT AT and (AT)-I.