×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 10.1: The Three-Dimensional Coordinate System

Precalculus With Limits A Graphing Approach | 5th Edition | ISBN: 9780618851522 | Authors: Ron Larson Robert Hostetler, Bruce H. Edwards, David C. Falvo (Contributor)

Full solutions for Precalculus With Limits A Graphing Approach | 5th Edition

ISBN: 9780618851522

Precalculus With Limits A Graphing Approach | 5th Edition | ISBN: 9780618851522 | Authors: Ron Larson Robert Hostetler, Bruce H. Edwards, David C. Falvo (Contributor)

Solutions for Chapter 10.1: The Three-Dimensional Coordinate System

Solutions for Chapter 10.1
4 5 0 334 Reviews
23
5
Textbook: Precalculus With Limits A Graphing Approach
Edition: 5
Author: Ron Larson Robert Hostetler, Bruce H. Edwards, David C. Falvo (Contributor)
ISBN: 9780618851522

This expansive textbook survival guide covers the following chapters and their solutions. Since 110 problems in chapter 10.1: The Three-Dimensional Coordinate System have been answered, more than 45941 students have viewed full step-by-step solutions from this chapter. Precalculus With Limits A Graphing Approach was written by and is associated to the ISBN: 9780618851522. Chapter 10.1: The Three-Dimensional Coordinate System includes 110 full step-by-step solutions. This textbook survival guide was created for the textbook: Precalculus With Limits A Graphing Approach, edition: 5.

Key Math Terms and definitions covered in this textbook
  • Cross product u xv in R3:

    Vector perpendicular to u and v, length Ilullllvlll sin el = area of parallelogram, u x v = "determinant" of [i j k; UI U2 U3; VI V2 V3].

  • Diagonal matrix D.

    dij = 0 if i #- j. Block-diagonal: zero outside square blocks Du.

  • Diagonalizable matrix A.

    Must have n independent eigenvectors (in the columns of S; automatic with n different eigenvalues). Then S-I AS = A = eigenvalue matrix.

  • Elimination.

    A sequence of row operations that reduces A to an upper triangular U or to the reduced form R = rref(A). Then A = LU with multipliers eO in L, or P A = L U with row exchanges in P, or E A = R with an invertible E.

  • Fundamental Theorem.

    The nullspace N (A) and row space C (AT) are orthogonal complements in Rn(perpendicular from Ax = 0 with dimensions rand n - r). Applied to AT, the column space C(A) is the orthogonal complement of N(AT) in Rm.

  • Gram-Schmidt orthogonalization A = QR.

    Independent columns in A, orthonormal columns in Q. Each column q j of Q is a combination of the first j columns of A (and conversely, so R is upper triangular). Convention: diag(R) > o.

  • Hermitian matrix A H = AT = A.

    Complex analog a j i = aU of a symmetric matrix.

  • Indefinite matrix.

    A symmetric matrix with eigenvalues of both signs (+ and - ).

  • Independent vectors VI, .. " vk.

    No combination cl VI + ... + qVk = zero vector unless all ci = O. If the v's are the columns of A, the only solution to Ax = 0 is x = o.

  • Kirchhoff's Laws.

    Current Law: net current (in minus out) is zero at each node. Voltage Law: Potential differences (voltage drops) add to zero around any closed loop.

  • Left nullspace N (AT).

    Nullspace of AT = "left nullspace" of A because y T A = OT.

  • Norm

    IIA II. The ".e 2 norm" of A is the maximum ratio II Ax II/l1x II = O"max· Then II Ax II < IIAllllxll and IIABII < IIAIIIIBII and IIA + BII < IIAII + IIBII. Frobenius norm IIAII} = L La~. The.e 1 and.e oo norms are largest column and row sums of laij I.

  • Pascal matrix

    Ps = pascal(n) = the symmetric matrix with binomial entries (i1~;2). Ps = PL Pu all contain Pascal's triangle with det = 1 (see Pascal in the index).

  • Rank r (A)

    = number of pivots = dimension of column space = dimension of row space.

  • Schwarz inequality

    Iv·wl < IIvll IIwll.Then IvTAwl2 < (vT Av)(wT Aw) for pos def A.

  • Simplex method for linear programming.

    The minimum cost vector x * is found by moving from comer to lower cost comer along the edges of the feasible set (where the constraints Ax = b and x > 0 are satisfied). Minimum cost at a comer!

  • Spectral Theorem A = QAQT.

    Real symmetric A has real A'S and orthonormal q's.

  • Unitary matrix UH = U T = U-I.

    Orthonormal columns (complex analog of Q).

  • Vector space V.

    Set of vectors such that all combinations cv + d w remain within V. Eight required rules are given in Section 3.1 for scalars c, d and vectors v, w.

  • Volume of box.

    The rows (or the columns) of A generate a box with volume I det(A) I.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password