 Chapter 1: FirstOrder Differential Equations
 Chapter 2: Linear Equations of Higher Order
 Chapter 3: Power Series Methods
 Chapter 4: Laplace Transform Methods
 Chapter 5: Linear Systems of Differential Equations
 Chapter 6: Numerical Methods
 Chapter 7: Nonlinear Systems and Phenomena
Elementary Differential Equations 6th Edition  Solutions by Chapter
Full solutions for Elementary Differential Equations  6th Edition
ISBN: 9780132397308
Elementary Differential Equations  6th Edition  Solutions by Chapter
Get Full SolutionsThis textbook survival guide was created for the textbook: Elementary Differential Equations, edition: 6. Elementary Differential Equations was written by and is associated to the ISBN: 9780132397308. Since problems from 7 chapters in Elementary Differential Equations have been answered, more than 13781 students have viewed full stepbystep answer. This expansive textbook survival guide covers the following chapters: 7. The full stepbystep solution to problem in Elementary Differential Equations were answered by , our top Math solution expert on 01/18/18, 04:44PM.

Block matrix.
A matrix can be partitioned into matrix blocks, by cuts between rows and/or between columns. Block multiplication ofAB is allowed if the block shapes permit.

Circulant matrix C.
Constant diagonals wrap around as in cyclic shift S. Every circulant is Col + CIS + ... + Cn_lSn  l . Cx = convolution c * x. Eigenvectors in F.

Companion matrix.
Put CI, ... ,Cn in row n and put n  1 ones just above the main diagonal. Then det(A  AI) = ±(CI + c2A + C3A 2 + .•. + cnA nl  An).

Condition number
cond(A) = c(A) = IIAIlIIAIII = amaxlamin. In Ax = b, the relative change Ilox III Ilx II is less than cond(A) times the relative change Ilob III lib II· Condition numbers measure the sensitivity of the output to change in the input.

Dot product = Inner product x T y = XI Y 1 + ... + Xn Yn.
Complex dot product is x T Y . Perpendicular vectors have x T y = O. (AB)ij = (row i of A)T(column j of B).

Elimination.
A sequence of row operations that reduces A to an upper triangular U or to the reduced form R = rref(A). Then A = LU with multipliers eO in L, or P A = L U with row exchanges in P, or E A = R with an invertible E.

GramSchmidt orthogonalization A = QR.
Independent columns in A, orthonormal columns in Q. Each column q j of Q is a combination of the first j columns of A (and conversely, so R is upper triangular). Convention: diag(R) > o.

Inverse matrix AI.
Square matrix with AI A = I and AAl = I. No inverse if det A = 0 and rank(A) < n and Ax = 0 for a nonzero vector x. The inverses of AB and AT are B1 AI and (AI)T. Cofactor formula (Al)ij = Cji! detA.

Matrix multiplication AB.
The i, j entry of AB is (row i of A)·(column j of B) = L aikbkj. By columns: Column j of AB = A times column j of B. By rows: row i of A multiplies B. Columns times rows: AB = sum of (column k)(row k). All these equivalent definitions come from the rule that A B times x equals A times B x .

Multiplication Ax
= Xl (column 1) + ... + xn(column n) = combination of columns.

Norm
IIA II. The ".e 2 norm" of A is the maximum ratio II Ax II/l1x II = O"max· Then II Ax II < IIAllllxll and IIABII < IIAIIIIBII and IIA + BII < IIAII + IIBII. Frobenius norm IIAII} = L La~. The.e 1 and.e oo norms are largest column and row sums of laij I.

Normal matrix.
If N NT = NT N, then N has orthonormal (complex) eigenvectors.

Particular solution x p.
Any solution to Ax = b; often x p has free variables = o.

Pseudoinverse A+ (MoorePenrose inverse).
The n by m matrix that "inverts" A from column space back to row space, with N(A+) = N(AT). A+ A and AA+ are the projection matrices onto the row space and column space. Rank(A +) = rank(A).

Reflection matrix (Householder) Q = I 2uuT.
Unit vector u is reflected to Qu = u. All x intheplanemirroruTx = o have Qx = x. Notice QT = Q1 = Q.

Singular matrix A.
A square matrix that has no inverse: det(A) = o.

Special solutions to As = O.
One free variable is Si = 1, other free variables = o.

Spectral Theorem A = QAQT.
Real symmetric A has real A'S and orthonormal q's.

Standard basis for Rn.
Columns of n by n identity matrix (written i ,j ,k in R3).

Tridiagonal matrix T: tij = 0 if Ii  j I > 1.
T 1 has rank 1 above and below diagonal.