×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 2.3: More on Proof of Correctness

Mathematical Structures for Computer Science | 7th Edition | ISBN: 9781429215107 | Authors: Judith L. Gersting

Full solutions for Mathematical Structures for Computer Science | 7th Edition

ISBN: 9781429215107

Mathematical Structures for Computer Science | 7th Edition | ISBN: 9781429215107 | Authors: Judith L. Gersting

Solutions for Chapter 2.3: More on Proof of Correctness

Solutions for Chapter 2.3
4 5 0 410 Reviews
18
1
Textbook: Mathematical Structures for Computer Science
Edition: 7
Author: Judith L. Gersting
ISBN: 9781429215107

Chapter 2.3: More on Proof of Correctness includes 28 full step-by-step solutions. Since 28 problems in chapter 2.3: More on Proof of Correctness have been answered, more than 18916 students have viewed full step-by-step solutions from this chapter. This expansive textbook survival guide covers the following chapters and their solutions. This textbook survival guide was created for the textbook: Mathematical Structures for Computer Science, edition: 7. Mathematical Structures for Computer Science was written by and is associated to the ISBN: 9781429215107.

Key Math Terms and definitions covered in this textbook
  • Adjacency matrix of a graph.

    Square matrix with aij = 1 when there is an edge from node i to node j; otherwise aij = O. A = AT when edges go both ways (undirected). Adjacency matrix of a graph. Square matrix with aij = 1 when there is an edge from node i to node j; otherwise aij = O. A = AT when edges go both ways (undirected).

  • Back substitution.

    Upper triangular systems are solved in reverse order Xn to Xl.

  • Complex conjugate

    z = a - ib for any complex number z = a + ib. Then zz = Iz12.

  • Conjugate Gradient Method.

    A sequence of steps (end of Chapter 9) to solve positive definite Ax = b by minimizing !x T Ax - x Tb over growing Krylov subspaces.

  • Dimension of vector space

    dim(V) = number of vectors in any basis for V.

  • Echelon matrix U.

    The first nonzero entry (the pivot) in each row comes in a later column than the pivot in the previous row. All zero rows come last.

  • Elimination matrix = Elementary matrix Eij.

    The identity matrix with an extra -eij in the i, j entry (i #- j). Then Eij A subtracts eij times row j of A from row i.

  • Hankel matrix H.

    Constant along each antidiagonal; hij depends on i + j.

  • Hermitian matrix A H = AT = A.

    Complex analog a j i = aU of a symmetric matrix.

  • Jordan form 1 = M- 1 AM.

    If A has s independent eigenvectors, its "generalized" eigenvector matrix M gives 1 = diag(lt, ... , 1s). The block his Akh +Nk where Nk has 1 's on diagonall. Each block has one eigenvalue Ak and one eigenvector.

  • Krylov subspace Kj(A, b).

    The subspace spanned by b, Ab, ... , Aj-Ib. Numerical methods approximate A -I b by x j with residual b - Ax j in this subspace. A good basis for K j requires only multiplication by A at each step.

  • Lucas numbers

    Ln = 2,J, 3, 4, ... satisfy Ln = L n- l +Ln- 2 = A1 +A~, with AI, A2 = (1 ± -/5)/2 from the Fibonacci matrix U~]' Compare Lo = 2 with Fo = O.

  • Network.

    A directed graph that has constants Cl, ... , Cm associated with the edges.

  • Orthogonal subspaces.

    Every v in V is orthogonal to every w in W.

  • Permutation matrix P.

    There are n! orders of 1, ... , n. The n! P 's have the rows of I in those orders. P A puts the rows of A in the same order. P is even or odd (det P = 1 or -1) based on the number of row exchanges to reach I.

  • Rayleigh quotient q (x) = X T Ax I x T x for symmetric A: Amin < q (x) < Amax.

    Those extremes are reached at the eigenvectors x for Amin(A) and Amax(A).

  • Row picture of Ax = b.

    Each equation gives a plane in Rn; the planes intersect at x.

  • Spectrum of A = the set of eigenvalues {A I, ... , An}.

    Spectral radius = max of IAi I.

  • Standard basis for Rn.

    Columns of n by n identity matrix (written i ,j ,k in R3).

  • Vector addition.

    v + w = (VI + WI, ... , Vn + Wn ) = diagonal of parallelogram.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password