×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 7.2: Euler Path and Hamiltonian Circuit

Mathematical Structures for Computer Science | 7th Edition | ISBN: 9781429215107 | Authors: Judith L. Gersting

Full solutions for Mathematical Structures for Computer Science | 7th Edition

ISBN: 9781429215107

Mathematical Structures for Computer Science | 7th Edition | ISBN: 9781429215107 | Authors: Judith L. Gersting

Solutions for Chapter 7.2: Euler Path and Hamiltonian Circuit

Solutions for Chapter 7.2
4 5 0 377 Reviews
31
0
Textbook: Mathematical Structures for Computer Science
Edition: 7
Author: Judith L. Gersting
ISBN: 9781429215107

This textbook survival guide was created for the textbook: Mathematical Structures for Computer Science, edition: 7. Mathematical Structures for Computer Science was written by and is associated to the ISBN: 9781429215107. This expansive textbook survival guide covers the following chapters and their solutions. Since 38 problems in chapter 7.2: Euler Path and Hamiltonian Circuit have been answered, more than 20004 students have viewed full step-by-step solutions from this chapter. Chapter 7.2: Euler Path and Hamiltonian Circuit includes 38 full step-by-step solutions.

Key Math Terms and definitions covered in this textbook
  • Affine transformation

    Tv = Av + Vo = linear transformation plus shift.

  • Determinant IAI = det(A).

    Defined by det I = 1, sign reversal for row exchange, and linearity in each row. Then IAI = 0 when A is singular. Also IABI = IAIIBI and

  • Diagonalization

    A = S-1 AS. A = eigenvalue matrix and S = eigenvector matrix of A. A must have n independent eigenvectors to make S invertible. All Ak = SA k S-I.

  • Fourier matrix F.

    Entries Fjk = e21Cijk/n give orthogonal columns FT F = nI. Then y = Fe is the (inverse) Discrete Fourier Transform Y j = L cke21Cijk/n.

  • Full column rank r = n.

    Independent columns, N(A) = {O}, no free variables.

  • Hankel matrix H.

    Constant along each antidiagonal; hij depends on i + j.

  • Kronecker product (tensor product) A ® B.

    Blocks aij B, eigenvalues Ap(A)Aq(B).

  • Least squares solution X.

    The vector x that minimizes the error lie 112 solves AT Ax = ATb. Then e = b - Ax is orthogonal to all columns of A.

  • Linear transformation T.

    Each vector V in the input space transforms to T (v) in the output space, and linearity requires T(cv + dw) = c T(v) + d T(w). Examples: Matrix multiplication A v, differentiation and integration in function space.

  • Multiplication Ax

    = Xl (column 1) + ... + xn(column n) = combination of columns.

  • Normal matrix.

    If N NT = NT N, then N has orthonormal (complex) eigenvectors.

  • Partial pivoting.

    In each column, choose the largest available pivot to control roundoff; all multipliers have leij I < 1. See condition number.

  • Rank r (A)

    = number of pivots = dimension of column space = dimension of row space.

  • Simplex method for linear programming.

    The minimum cost vector x * is found by moving from comer to lower cost comer along the edges of the feasible set (where the constraints Ax = b and x > 0 are satisfied). Minimum cost at a comer!

  • Singular matrix A.

    A square matrix that has no inverse: det(A) = o.

  • Singular Value Decomposition

    (SVD) A = U:E VT = (orthogonal) ( diag)( orthogonal) First r columns of U and V are orthonormal bases of C (A) and C (AT), AVi = O'iUi with singular value O'i > O. Last columns are orthonormal bases of nullspaces.

  • Spectral Theorem A = QAQT.

    Real symmetric A has real A'S and orthonormal q's.

  • Sum V + W of subs paces.

    Space of all (v in V) + (w in W). Direct sum: V n W = to}.

  • Toeplitz matrix.

    Constant down each diagonal = time-invariant (shift-invariant) filter.

  • Vector space V.

    Set of vectors such that all combinations cv + d w remain within V. Eight required rules are given in Section 3.1 for scalars c, d and vectors v, w.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password