Solutions for Chapter 9.2: Coding Theory

Mathematical Structures for Computer Science | 7th Edition | ISBN: 9781429215107 | Authors: Judith L. Gersting

Full solutions for Mathematical Structures for Computer Science | 7th Edition

ISBN: 9781429215107

Mathematical Structures for Computer Science | 7th Edition | ISBN: 9781429215107 | Authors: Judith L. Gersting

Solutions for Chapter 9.2: Coding Theory

Solutions for Chapter 9.2
4 5 0 237 Reviews
27
1
Textbook: Mathematical Structures for Computer Science
Edition: 7
Author: Judith L. Gersting
ISBN: 9781429215107

Since 18 problems in chapter 9.2: Coding Theory have been answered, more than 9582 students have viewed full step-by-step solutions from this chapter. This expansive textbook survival guide covers the following chapters and their solutions. Chapter 9.2: Coding Theory includes 18 full step-by-step solutions. This textbook survival guide was created for the textbook: Mathematical Structures for Computer Science, edition: 7. Mathematical Structures for Computer Science was written by and is associated to the ISBN: 9781429215107.

Key Math Terms and definitions covered in this textbook
  • Characteristic equation det(A - AI) = O.

    The n roots are the eigenvalues of A.

  • Complete solution x = x p + Xn to Ax = b.

    (Particular x p) + (x n in nullspace).

  • Complex conjugate

    z = a - ib for any complex number z = a + ib. Then zz = Iz12.

  • Conjugate Gradient Method.

    A sequence of steps (end of Chapter 9) to solve positive definite Ax = b by minimizing !x T Ax - x Tb over growing Krylov subspaces.

  • Cramer's Rule for Ax = b.

    B j has b replacing column j of A; x j = det B j I det A

  • Hilbert matrix hilb(n).

    Entries HU = 1/(i + j -1) = Jd X i- 1 xj-1dx. Positive definite but extremely small Amin and large condition number: H is ill-conditioned.

  • Identity matrix I (or In).

    Diagonal entries = 1, off-diagonal entries = 0.

  • Indefinite matrix.

    A symmetric matrix with eigenvalues of both signs (+ and - ).

  • Independent vectors VI, .. " vk.

    No combination cl VI + ... + qVk = zero vector unless all ci = O. If the v's are the columns of A, the only solution to Ax = 0 is x = o.

  • Jordan form 1 = M- 1 AM.

    If A has s independent eigenvectors, its "generalized" eigenvector matrix M gives 1 = diag(lt, ... , 1s). The block his Akh +Nk where Nk has 1 's on diagonall. Each block has one eigenvalue Ak and one eigenvector.

  • Left inverse A+.

    If A has full column rank n, then A+ = (AT A)-I AT has A+ A = In.

  • Norm

    IIA II. The ".e 2 norm" of A is the maximum ratio II Ax II/l1x II = O"max· Then II Ax II < IIAllllxll and IIABII < IIAIIIIBII and IIA + BII < IIAII + IIBII. Frobenius norm IIAII} = L La~. The.e 1 and.e oo norms are largest column and row sums of laij I.

  • Plane (or hyperplane) in Rn.

    Vectors x with aT x = O. Plane is perpendicular to a =1= O.

  • Pseudoinverse A+ (Moore-Penrose inverse).

    The n by m matrix that "inverts" A from column space back to row space, with N(A+) = N(AT). A+ A and AA+ are the projection matrices onto the row space and column space. Rank(A +) = rank(A).

  • Rotation matrix

    R = [~ CS ] rotates the plane by () and R- 1 = RT rotates back by -(). Eigenvalues are eiO and e-iO , eigenvectors are (1, ±i). c, s = cos (), sin ().

  • Simplex method for linear programming.

    The minimum cost vector x * is found by moving from comer to lower cost comer along the edges of the feasible set (where the constraints Ax = b and x > 0 are satisfied). Minimum cost at a comer!

  • Toeplitz matrix.

    Constant down each diagonal = time-invariant (shift-invariant) filter.

  • Trace of A

    = sum of diagonal entries = sum of eigenvalues of A. Tr AB = Tr BA.

  • Vector v in Rn.

    Sequence of n real numbers v = (VI, ... , Vn) = point in Rn.

  • Wavelets Wjk(t).

    Stretch and shift the time axis to create Wjk(t) = woo(2j t - k).

×
Log in to StudySoup
Get Full Access to Thousands of Study Materials at Your School

Forgot password? Reset password here

Join StudySoup for FREE
Get Full Access to Thousands of Study Materials at Your School
Join with Email
Already have an account? Login here
Reset your password

I don't want to reset my password

Need help? Contact support

Need an Account? Is not associated with an account
Sign up
We're here to help

Having trouble accessing your account? Let us help you, contact support at +1(510) 944-1054 or support@studysoup.com

Got it, thanks!
Password Reset Request Sent An email has been sent to the email address associated to your account. Follow the link in the email to reset your password. If you're having trouble finding our email please check your spam folder
Got it, thanks!
Already have an Account? Is already in use
Log in
Incorrect Password The password used to log in with this account is incorrect
Try Again

Forgot password? Reset it here