×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 2.4: An Introduction to Applications of Linear Equations

Beginning Algebra | 11th Edition | ISBN: 9780321673480 | Authors: Margaret L. Lial John Hornsby, Terry McGinnis

Full solutions for Beginning Algebra | 11th Edition

ISBN: 9780321673480

Beginning Algebra | 11th Edition | ISBN: 9780321673480 | Authors: Margaret L. Lial John Hornsby, Terry McGinnis

Solutions for Chapter 2.4: An Introduction to Applications of Linear Equations

Solutions for Chapter 2.4
4 5 0 337 Reviews
23
2
Textbook: Beginning Algebra
Edition: 11
Author: Margaret L. Lial John Hornsby, Terry McGinnis
ISBN: 9780321673480

This textbook survival guide was created for the textbook: Beginning Algebra, edition: 11. Chapter 2.4: An Introduction to Applications of Linear Equations includes 62 full step-by-step solutions. Since 62 problems in chapter 2.4: An Introduction to Applications of Linear Equations have been answered, more than 40099 students have viewed full step-by-step solutions from this chapter. This expansive textbook survival guide covers the following chapters and their solutions. Beginning Algebra was written by and is associated to the ISBN: 9780321673480.

Key Math Terms and definitions covered in this textbook
  • Adjacency matrix of a graph.

    Square matrix with aij = 1 when there is an edge from node i to node j; otherwise aij = O. A = AT when edges go both ways (undirected). Adjacency matrix of a graph. Square matrix with aij = 1 when there is an edge from node i to node j; otherwise aij = O. A = AT when edges go both ways (undirected).

  • Associative Law (AB)C = A(BC).

    Parentheses can be removed to leave ABC.

  • Characteristic equation det(A - AI) = O.

    The n roots are the eigenvalues of A.

  • Companion matrix.

    Put CI, ... ,Cn in row n and put n - 1 ones just above the main diagonal. Then det(A - AI) = ±(CI + c2A + C3A 2 + .•. + cnA n-l - An).

  • Cyclic shift

    S. Permutation with S21 = 1, S32 = 1, ... , finally SIn = 1. Its eigenvalues are the nth roots e2lrik/n of 1; eigenvectors are columns of the Fourier matrix F.

  • Determinant IAI = det(A).

    Defined by det I = 1, sign reversal for row exchange, and linearity in each row. Then IAI = 0 when A is singular. Also IABI = IAIIBI and

  • Diagonalization

    A = S-1 AS. A = eigenvalue matrix and S = eigenvector matrix of A. A must have n independent eigenvectors to make S invertible. All Ak = SA k S-I.

  • Dimension of vector space

    dim(V) = number of vectors in any basis for V.

  • Elimination.

    A sequence of row operations that reduces A to an upper triangular U or to the reduced form R = rref(A). Then A = LU with multipliers eO in L, or P A = L U with row exchanges in P, or E A = R with an invertible E.

  • Exponential eAt = I + At + (At)2 12! + ...

    has derivative AeAt; eAt u(O) solves u' = Au.

  • Factorization

    A = L U. If elimination takes A to U without row exchanges, then the lower triangular L with multipliers eij (and eii = 1) brings U back to A.

  • Four Fundamental Subspaces C (A), N (A), C (AT), N (AT).

    Use AT for complex A.

  • Free variable Xi.

    Column i has no pivot in elimination. We can give the n - r free variables any values, then Ax = b determines the r pivot variables (if solvable!).

  • Indefinite matrix.

    A symmetric matrix with eigenvalues of both signs (+ and - ).

  • Kirchhoff's Laws.

    Current Law: net current (in minus out) is zero at each node. Voltage Law: Potential differences (voltage drops) add to zero around any closed loop.

  • Nullspace matrix N.

    The columns of N are the n - r special solutions to As = O.

  • Outer product uv T

    = column times row = rank one matrix.

  • Partial pivoting.

    In each column, choose the largest available pivot to control roundoff; all multipliers have leij I < 1. See condition number.

  • Singular matrix A.

    A square matrix that has no inverse: det(A) = o.

  • Spectrum of A = the set of eigenvalues {A I, ... , An}.

    Spectral radius = max of IAi I.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password