×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 5.4: Adding and Subtracting Polynomials; Graphing Simple Polynomials

Beginning Algebra | 11th Edition | ISBN: 9780321673480 | Authors: Margaret L. Lial John Hornsby, Terry McGinnis

Full solutions for Beginning Algebra | 11th Edition

ISBN: 9780321673480

Beginning Algebra | 11th Edition | ISBN: 9780321673480 | Authors: Margaret L. Lial John Hornsby, Terry McGinnis

Solutions for Chapter 5.4: Adding and Subtracting Polynomials; Graphing Simple Polynomials

Solutions for Chapter 5.4
4 5 0 308 Reviews
17
2
Textbook: Beginning Algebra
Edition: 11
Author: Margaret L. Lial John Hornsby, Terry McGinnis
ISBN: 9780321673480

This textbook survival guide was created for the textbook: Beginning Algebra, edition: 11. Since 108 problems in chapter 5.4: Adding and Subtracting Polynomials; Graphing Simple Polynomials have been answered, more than 37795 students have viewed full step-by-step solutions from this chapter. This expansive textbook survival guide covers the following chapters and their solutions. Chapter 5.4: Adding and Subtracting Polynomials; Graphing Simple Polynomials includes 108 full step-by-step solutions. Beginning Algebra was written by and is associated to the ISBN: 9780321673480.

Key Math Terms and definitions covered in this textbook
  • Cholesky factorization

    A = CTC = (L.J]))(L.J]))T for positive definite A.

  • Column picture of Ax = b.

    The vector b becomes a combination of the columns of A. The system is solvable only when b is in the column space C (A).

  • Cyclic shift

    S. Permutation with S21 = 1, S32 = 1, ... , finally SIn = 1. Its eigenvalues are the nth roots e2lrik/n of 1; eigenvectors are columns of the Fourier matrix F.

  • Diagonal matrix D.

    dij = 0 if i #- j. Block-diagonal: zero outside square blocks Du.

  • Dimension of vector space

    dim(V) = number of vectors in any basis for V.

  • Eigenvalue A and eigenvector x.

    Ax = AX with x#-O so det(A - AI) = o.

  • Gauss-Jordan method.

    Invert A by row operations on [A I] to reach [I A-I].

  • Hankel matrix H.

    Constant along each antidiagonal; hij depends on i + j.

  • Iterative method.

    A sequence of steps intended to approach the desired solution.

  • Normal matrix.

    If N NT = NT N, then N has orthonormal (complex) eigenvectors.

  • Nullspace matrix N.

    The columns of N are the n - r special solutions to As = O.

  • Orthogonal subspaces.

    Every v in V is orthogonal to every w in W.

  • Partial pivoting.

    In each column, choose the largest available pivot to control roundoff; all multipliers have leij I < 1. See condition number.

  • Pseudoinverse A+ (Moore-Penrose inverse).

    The n by m matrix that "inverts" A from column space back to row space, with N(A+) = N(AT). A+ A and AA+ are the projection matrices onto the row space and column space. Rank(A +) = rank(A).

  • Rank r (A)

    = number of pivots = dimension of column space = dimension of row space.

  • Rotation matrix

    R = [~ CS ] rotates the plane by () and R- 1 = RT rotates back by -(). Eigenvalues are eiO and e-iO , eigenvectors are (1, ±i). c, s = cos (), sin ().

  • Saddle point of I(x}, ... ,xn ).

    A point where the first derivatives of I are zero and the second derivative matrix (a2 II aXi ax j = Hessian matrix) is indefinite.

  • Schwarz inequality

    Iv·wl < IIvll IIwll.Then IvTAwl2 < (vT Av)(wT Aw) for pos def A.

  • Spanning set.

    Combinations of VI, ... ,Vm fill the space. The columns of A span C (A)!

  • Unitary matrix UH = U T = U-I.

    Orthonormal columns (complex analog of Q).

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password