×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Already have an account? Login here
×
Reset your password

Solutions for Chapter 9.2: Solving Quadratic Equations by Completing the Square

Beginning Algebra | 11th Edition | ISBN: 9780321673480 | Authors: Margaret L. Lial John Hornsby, Terry McGinnis

Full solutions for Beginning Algebra | 11th Edition

ISBN: 9780321673480

Beginning Algebra | 11th Edition | ISBN: 9780321673480 | Authors: Margaret L. Lial John Hornsby, Terry McGinnis

Solutions for Chapter 9.2: Solving Quadratic Equations by Completing the Square

Solutions for Chapter 9.2
4 5 0 393 Reviews
17
5
Textbook: Beginning Algebra
Edition: 11
Author: Margaret L. Lial John Hornsby, Terry McGinnis
ISBN: 9780321673480

This textbook survival guide was created for the textbook: Beginning Algebra, edition: 11. Since 54 problems in chapter 9.2: Solving Quadratic Equations by Completing the Square have been answered, more than 40178 students have viewed full step-by-step solutions from this chapter. Chapter 9.2: Solving Quadratic Equations by Completing the Square includes 54 full step-by-step solutions. Beginning Algebra was written by and is associated to the ISBN: 9780321673480. This expansive textbook survival guide covers the following chapters and their solutions.

Key Math Terms and definitions covered in this textbook
  • Commuting matrices AB = BA.

    If diagonalizable, they share n eigenvectors.

  • Companion matrix.

    Put CI, ... ,Cn in row n and put n - 1 ones just above the main diagonal. Then det(A - AI) = ±(CI + c2A + C3A 2 + .•. + cnA n-l - An).

  • Cross product u xv in R3:

    Vector perpendicular to u and v, length Ilullllvlll sin el = area of parallelogram, u x v = "determinant" of [i j k; UI U2 U3; VI V2 V3].

  • Dot product = Inner product x T y = XI Y 1 + ... + Xn Yn.

    Complex dot product is x T Y . Perpendicular vectors have x T y = O. (AB)ij = (row i of A)T(column j of B).

  • Elimination matrix = Elementary matrix Eij.

    The identity matrix with an extra -eij in the i, j entry (i #- j). Then Eij A subtracts eij times row j of A from row i.

  • Ellipse (or ellipsoid) x T Ax = 1.

    A must be positive definite; the axes of the ellipse are eigenvectors of A, with lengths 1/.JI. (For IIx II = 1 the vectors y = Ax lie on the ellipse IIA-1 yll2 = Y T(AAT)-1 Y = 1 displayed by eigshow; axis lengths ad

  • Factorization

    A = L U. If elimination takes A to U without row exchanges, then the lower triangular L with multipliers eij (and eii = 1) brings U back to A.

  • Four Fundamental Subspaces C (A), N (A), C (AT), N (AT).

    Use AT for complex A.

  • Hankel matrix H.

    Constant along each antidiagonal; hij depends on i + j.

  • Jordan form 1 = M- 1 AM.

    If A has s independent eigenvectors, its "generalized" eigenvector matrix M gives 1 = diag(lt, ... , 1s). The block his Akh +Nk where Nk has 1 's on diagonall. Each block has one eigenvalue Ak and one eigenvector.

  • Linear combination cv + d w or L C jV j.

    Vector addition and scalar multiplication.

  • Pivot columns of A.

    Columns that contain pivots after row reduction. These are not combinations of earlier columns. The pivot columns are a basis for the column space.

  • Pivot.

    The diagonal entry (first nonzero) at the time when a row is used in elimination.

  • Rank one matrix A = uvT f=. O.

    Column and row spaces = lines cu and cv.

  • Row picture of Ax = b.

    Each equation gives a plane in Rn; the planes intersect at x.

  • Row space C (AT) = all combinations of rows of A.

    Column vectors by convention.

  • Singular matrix A.

    A square matrix that has no inverse: det(A) = o.

  • Spectrum of A = the set of eigenvalues {A I, ... , An}.

    Spectral radius = max of IAi I.

  • Trace of A

    = sum of diagonal entries = sum of eigenvalues of A. Tr AB = Tr BA.

  • Unitary matrix UH = U T = U-I.

    Orthonormal columns (complex analog of Q).