×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 4.5: Exponential and Logarithmic Functions

Algebra and Trigonometry: Real Mathematics, Real People | 7th Edition | ISBN: 9781305071735 | Authors: Ron Larson

Full solutions for Algebra and Trigonometry: Real Mathematics, Real People | 7th Edition

ISBN: 9781305071735

Algebra and Trigonometry: Real Mathematics, Real People | 7th Edition | ISBN: 9781305071735 | Authors: Ron Larson

Solutions for Chapter 4.5: Exponential and Logarithmic Functions

Solutions for Chapter 4.5
4 5 0 365 Reviews
19
4
Textbook: Algebra and Trigonometry: Real Mathematics, Real People
Edition: 7
Author: Ron Larson
ISBN: 9781305071735

This expansive textbook survival guide covers the following chapters and their solutions. Since 79 problems in chapter 4.5: Exponential and Logarithmic Functions have been answered, more than 65705 students have viewed full step-by-step solutions from this chapter. This textbook survival guide was created for the textbook: Algebra and Trigonometry: Real Mathematics, Real People, edition: 7. Chapter 4.5: Exponential and Logarithmic Functions includes 79 full step-by-step solutions. Algebra and Trigonometry: Real Mathematics, Real People was written by and is associated to the ISBN: 9781305071735.

Key Math Terms and definitions covered in this textbook
  • Affine transformation

    Tv = Av + Vo = linear transformation plus shift.

  • Big formula for n by n determinants.

    Det(A) is a sum of n! terms. For each term: Multiply one entry from each row and column of A: rows in order 1, ... , nand column order given by a permutation P. Each of the n! P 's has a + or - sign.

  • Conjugate Gradient Method.

    A sequence of steps (end of Chapter 9) to solve positive definite Ax = b by minimizing !x T Ax - x Tb over growing Krylov subspaces.

  • Covariance matrix:E.

    When random variables Xi have mean = average value = 0, their covariances "'£ ij are the averages of XiX j. With means Xi, the matrix :E = mean of (x - x) (x - x) T is positive (semi)definite; :E is diagonal if the Xi are independent.

  • Distributive Law

    A(B + C) = AB + AC. Add then multiply, or mUltiply then add.

  • Ellipse (or ellipsoid) x T Ax = 1.

    A must be positive definite; the axes of the ellipse are eigenvectors of A, with lengths 1/.JI. (For IIx II = 1 the vectors y = Ax lie on the ellipse IIA-1 yll2 = Y T(AAT)-1 Y = 1 displayed by eigshow; axis lengths ad

  • Full row rank r = m.

    Independent rows, at least one solution to Ax = b, column space is all of Rm. Full rank means full column rank or full row rank.

  • Fundamental Theorem.

    The nullspace N (A) and row space C (AT) are orthogonal complements in Rn(perpendicular from Ax = 0 with dimensions rand n - r). Applied to AT, the column space C(A) is the orthogonal complement of N(AT) in Rm.

  • Gauss-Jordan method.

    Invert A by row operations on [A I] to reach [I A-I].

  • Identity matrix I (or In).

    Diagonal entries = 1, off-diagonal entries = 0.

  • Kronecker product (tensor product) A ® B.

    Blocks aij B, eigenvalues Ap(A)Aq(B).

  • Lucas numbers

    Ln = 2,J, 3, 4, ... satisfy Ln = L n- l +Ln- 2 = A1 +A~, with AI, A2 = (1 ± -/5)/2 from the Fibonacci matrix U~]' Compare Lo = 2 with Fo = O.

  • Multiplication Ax

    = Xl (column 1) + ... + xn(column n) = combination of columns.

  • Normal matrix.

    If N NT = NT N, then N has orthonormal (complex) eigenvectors.

  • Particular solution x p.

    Any solution to Ax = b; often x p has free variables = o.

  • Rank r (A)

    = number of pivots = dimension of column space = dimension of row space.

  • Saddle point of I(x}, ... ,xn ).

    A point where the first derivatives of I are zero and the second derivative matrix (a2 II aXi ax j = Hessian matrix) is indefinite.

  • Simplex method for linear programming.

    The minimum cost vector x * is found by moving from comer to lower cost comer along the edges of the feasible set (where the constraints Ax = b and x > 0 are satisfied). Minimum cost at a comer!

  • Spanning set.

    Combinations of VI, ... ,Vm fill the space. The columns of A span C (A)!

  • Unitary matrix UH = U T = U-I.

    Orthonormal columns (complex analog of Q).

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password