×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 7.5: Additional Topics in Trigonometry

Algebra and Trigonometry: Real Mathematics, Real People | 7th Edition | ISBN: 9781305071735 | Authors: Ron Larson

Full solutions for Algebra and Trigonometry: Real Mathematics, Real People | 7th Edition

ISBN: 9781305071735

Algebra and Trigonometry: Real Mathematics, Real People | 7th Edition | ISBN: 9781305071735 | Authors: Ron Larson

Solutions for Chapter 7.5: Additional Topics in Trigonometry

Solutions for Chapter 7.5
4 5 0 390 Reviews
11
3
Textbook: Algebra and Trigonometry: Real Mathematics, Real People
Edition: 7
Author: Ron Larson
ISBN: 9781305071735

This textbook survival guide was created for the textbook: Algebra and Trigonometry: Real Mathematics, Real People, edition: 7. Since 180 problems in chapter 7.5: Additional Topics in Trigonometry have been answered, more than 65816 students have viewed full step-by-step solutions from this chapter. Chapter 7.5: Additional Topics in Trigonometry includes 180 full step-by-step solutions. This expansive textbook survival guide covers the following chapters and their solutions. Algebra and Trigonometry: Real Mathematics, Real People was written by and is associated to the ISBN: 9781305071735.

Key Math Terms and definitions covered in this textbook
  • Basis for V.

    Independent vectors VI, ... , v d whose linear combinations give each vector in V as v = CIVI + ... + CdVd. V has many bases, each basis gives unique c's. A vector space has many bases!

  • Cholesky factorization

    A = CTC = (L.J]))(L.J]))T for positive definite A.

  • Commuting matrices AB = BA.

    If diagonalizable, they share n eigenvectors.

  • Condition number

    cond(A) = c(A) = IIAIlIIA-III = amaxlamin. In Ax = b, the relative change Ilox III Ilx II is less than cond(A) times the relative change Ilob III lib II· Condition numbers measure the sensitivity of the output to change in the input.

  • Diagonal matrix D.

    dij = 0 if i #- j. Block-diagonal: zero outside square blocks Du.

  • Diagonalizable matrix A.

    Must have n independent eigenvectors (in the columns of S; automatic with n different eigenvalues). Then S-I AS = A = eigenvalue matrix.

  • Echelon matrix U.

    The first nonzero entry (the pivot) in each row comes in a later column than the pivot in the previous row. All zero rows come last.

  • Independent vectors VI, .. " vk.

    No combination cl VI + ... + qVk = zero vector unless all ci = O. If the v's are the columns of A, the only solution to Ax = 0 is x = o.

  • Kirchhoff's Laws.

    Current Law: net current (in minus out) is zero at each node. Voltage Law: Potential differences (voltage drops) add to zero around any closed loop.

  • Left inverse A+.

    If A has full column rank n, then A+ = (AT A)-I AT has A+ A = In.

  • Left nullspace N (AT).

    Nullspace of AT = "left nullspace" of A because y T A = OT.

  • Normal equation AT Ax = ATb.

    Gives the least squares solution to Ax = b if A has full rank n (independent columns). The equation says that (columns of A)·(b - Ax) = o.

  • Nullspace matrix N.

    The columns of N are the n - r special solutions to As = O.

  • Permutation matrix P.

    There are n! orders of 1, ... , n. The n! P 's have the rows of I in those orders. P A puts the rows of A in the same order. P is even or odd (det P = 1 or -1) based on the number of row exchanges to reach I.

  • Pivot columns of A.

    Columns that contain pivots after row reduction. These are not combinations of earlier columns. The pivot columns are a basis for the column space.

  • Rank one matrix A = uvT f=. O.

    Column and row spaces = lines cu and cv.

  • Simplex method for linear programming.

    The minimum cost vector x * is found by moving from comer to lower cost comer along the edges of the feasible set (where the constraints Ax = b and x > 0 are satisfied). Minimum cost at a comer!

  • Skew-symmetric matrix K.

    The transpose is -K, since Kij = -Kji. Eigenvalues are pure imaginary, eigenvectors are orthogonal, eKt is an orthogonal matrix.

  • Symmetric factorizations A = LDLT and A = QAQT.

    Signs in A = signs in D.

  • Volume of box.

    The rows (or the columns) of A generate a box with volume I det(A) I.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password