 3.2.3.2.1: For the following functions, sketch the Fourier series of f(x) (on ...
 3.2.3.2.2: For the following functions, sketch the Fourier series of f(x) (on ...
 3.2.3.2.3: Show that the Fourier series operation is linear: that is, show tha...
 3.2.3.2.4: Suppose that f(x) is piecewise smooth. What value does the Fourier ...
Solutions for Chapter 3.2: Fourier Series
Full solutions for Applied Partial Differential Equations with Fourier Series and Boundary Value Problems  5th Edition
ISBN: 9780321797056
Solutions for Chapter 3.2: Fourier Series
Get Full SolutionsThis textbook survival guide was created for the textbook: Applied Partial Differential Equations with Fourier Series and Boundary Value Problems, edition: 5. Since 4 problems in chapter 3.2: Fourier Series have been answered, more than 7776 students have viewed full stepbystep solutions from this chapter. Applied Partial Differential Equations with Fourier Series and Boundary Value Problems was written by and is associated to the ISBN: 9780321797056. Chapter 3.2: Fourier Series includes 4 full stepbystep solutions. This expansive textbook survival guide covers the following chapters and their solutions.

Basis for V.
Independent vectors VI, ... , v d whose linear combinations give each vector in V as v = CIVI + ... + CdVd. V has many bases, each basis gives unique c's. A vector space has many bases!

Condition number
cond(A) = c(A) = IIAIlIIAIII = amaxlamin. In Ax = b, the relative change Ilox III Ilx II is less than cond(A) times the relative change Ilob III lib II· Condition numbers measure the sensitivity of the output to change in the input.

Cramer's Rule for Ax = b.
B j has b replacing column j of A; x j = det B j I det A

Diagonalization
A = S1 AS. A = eigenvalue matrix and S = eigenvector matrix of A. A must have n independent eigenvectors to make S invertible. All Ak = SA k SI.

Full column rank r = n.
Independent columns, N(A) = {O}, no free variables.

Fundamental Theorem.
The nullspace N (A) and row space C (AT) are orthogonal complements in Rn(perpendicular from Ax = 0 with dimensions rand n  r). Applied to AT, the column space C(A) is the orthogonal complement of N(AT) in Rm.

Kirchhoff's Laws.
Current Law: net current (in minus out) is zero at each node. Voltage Law: Potential differences (voltage drops) add to zero around any closed loop.

Kronecker product (tensor product) A ® B.
Blocks aij B, eigenvalues Ap(A)Aq(B).

Network.
A directed graph that has constants Cl, ... , Cm associated with the edges.

Positive definite matrix A.
Symmetric matrix with positive eigenvalues and positive pivots. Definition: x T Ax > 0 unless x = O. Then A = LDLT with diag(D» O.

Row picture of Ax = b.
Each equation gives a plane in Rn; the planes intersect at x.

Schur complement S, D  C A } B.
Appears in block elimination on [~ g ].

Semidefinite matrix A.
(Positive) semidefinite: all x T Ax > 0, all A > 0; A = any RT R.

Skewsymmetric matrix K.
The transpose is K, since Kij = Kji. Eigenvalues are pure imaginary, eigenvectors are orthogonal, eKt is an orthogonal matrix.

Solvable system Ax = b.
The right side b is in the column space of A.

Standard basis for Rn.
Columns of n by n identity matrix (written i ,j ,k in R3).

Triangle inequality II u + v II < II u II + II v II.
For matrix norms II A + B II < II A II + II B II·

Vector addition.
v + w = (VI + WI, ... , Vn + Wn ) = diagonal of parallelogram.

Vector v in Rn.
Sequence of n real numbers v = (VI, ... , Vn) = point in Rn.

Wavelets Wjk(t).
Stretch and shift the time axis to create Wjk(t) = woo(2j t  k).