 5.7.5.7.1: Determine an upper and a (nonzero) lower bound for the lowest frequ...
 5.7.5.7.2: Consider heat flow in a onedimensional rod without sources with no...
 5.7.5.7.3: Assume (5.7.1)(5.7.6) are valid. Consider the onedimensional wave ...
Solutions for Chapter 5.7: SturmLiouville Eigenvalue Problems
Full solutions for Applied Partial Differential Equations with Fourier Series and Boundary Value Problems  5th Edition
ISBN: 9780321797056
Solutions for Chapter 5.7: SturmLiouville Eigenvalue Problems
Get Full SolutionsSince 3 problems in chapter 5.7: SturmLiouville Eigenvalue Problems have been answered, more than 8080 students have viewed full stepbystep solutions from this chapter. This expansive textbook survival guide covers the following chapters and their solutions. Chapter 5.7: SturmLiouville Eigenvalue Problems includes 3 full stepbystep solutions. This textbook survival guide was created for the textbook: Applied Partial Differential Equations with Fourier Series and Boundary Value Problems, edition: 5. Applied Partial Differential Equations with Fourier Series and Boundary Value Problems was written by and is associated to the ISBN: 9780321797056.

Affine transformation
Tv = Av + Vo = linear transformation plus shift.

Cramer's Rule for Ax = b.
B j has b replacing column j of A; x j = det B j I det A

Diagonal matrix D.
dij = 0 if i # j. Blockdiagonal: zero outside square blocks Du.

Distributive Law
A(B + C) = AB + AC. Add then multiply, or mUltiply then add.

GaussJordan method.
Invert A by row operations on [A I] to reach [I AI].

Hermitian matrix A H = AT = A.
Complex analog a j i = aU of a symmetric matrix.

Jordan form 1 = M 1 AM.
If A has s independent eigenvectors, its "generalized" eigenvector matrix M gives 1 = diag(lt, ... , 1s). The block his Akh +Nk where Nk has 1 's on diagonall. Each block has one eigenvalue Ak and one eigenvector.

Left inverse A+.
If A has full column rank n, then A+ = (AT A)I AT has A+ A = In.

Minimal polynomial of A.
The lowest degree polynomial with meA) = zero matrix. This is peA) = det(A  AI) if no eigenvalues are repeated; always meA) divides peA).

Nilpotent matrix N.
Some power of N is the zero matrix, N k = o. The only eigenvalue is A = 0 (repeated n times). Examples: triangular matrices with zero diagonal.

Norm
IIA II. The ".e 2 norm" of A is the maximum ratio II Ax II/l1x II = O"max· Then II Ax II < IIAllllxll and IIABII < IIAIIIIBII and IIA + BII < IIAII + IIBII. Frobenius norm IIAII} = L La~. The.e 1 and.e oo norms are largest column and row sums of laij I.

Particular solution x p.
Any solution to Ax = b; often x p has free variables = o.

Pseudoinverse A+ (MoorePenrose inverse).
The n by m matrix that "inverts" A from column space back to row space, with N(A+) = N(AT). A+ A and AA+ are the projection matrices onto the row space and column space. Rank(A +) = rank(A).

Rank one matrix A = uvT f=. O.
Column and row spaces = lines cu and cv.

Row picture of Ax = b.
Each equation gives a plane in Rn; the planes intersect at x.

Similar matrices A and B.
Every B = MI AM has the same eigenvalues as A.

Simplex method for linear programming.
The minimum cost vector x * is found by moving from comer to lower cost comer along the edges of the feasible set (where the constraints Ax = b and x > 0 are satisfied). Minimum cost at a comer!

Spanning set.
Combinations of VI, ... ,Vm fill the space. The columns of A span C (A)!

Toeplitz matrix.
Constant down each diagonal = timeinvariant (shiftinvariant) filter.

Transpose matrix AT.
Entries AL = Ajj. AT is n by In, AT A is square, symmetric, positive semidefinite. The transposes of AB and AI are BT AT and (AT)I.