Make up to $500 this semester by taking notes for StudySoup as an Elite Notetaker Apply Now

Solutions for Chapter 10: Analytic Geometry

Elementary Geometry for College Students | 6th Edition | ISBN: 9781285195698 | Authors: Daniel C. Alexander, Geralyn M. Koeberlein

Full solutions for Elementary Geometry for College Students | 6th Edition

ISBN: 9781285195698

Elementary Geometry for College Students | 6th Edition | ISBN: 9781285195698 | Authors: Daniel C. Alexander, Geralyn M. Koeberlein

Solutions for Chapter 10: Analytic Geometry

Solutions for Chapter 10
4 5 0 239 Reviews
11
5
Textbook: Elementary Geometry for College Students
Edition: 6
Author: Daniel C. Alexander, Geralyn M. Koeberlein
ISBN: 9781285195698

This expansive textbook survival guide covers the following chapters and their solutions. This textbook survival guide was created for the textbook: Elementary Geometry for College Students, edition: 6. Elementary Geometry for College Students was written by Patricia and is associated to the ISBN: 9781285195698. Since 50 problems in chapter 10: Analytic Geometry have been answered, more than 1427 students have viewed full step-by-step solutions from this chapter. Chapter 10: Analytic Geometry includes 50 full step-by-step solutions.

Key Math Terms and definitions covered in this textbook
  • Affine transformation

    Tv = Av + Vo = linear transformation plus shift.

  • Block matrix.

    A matrix can be partitioned into matrix blocks, by cuts between rows and/or between columns. Block multiplication ofAB is allowed if the block shapes permit.

  • Cayley-Hamilton Theorem.

    peA) = det(A - AI) has peA) = zero matrix.

  • Circulant matrix C.

    Constant diagonals wrap around as in cyclic shift S. Every circulant is Col + CIS + ... + Cn_lSn - l . Cx = convolution c * x. Eigenvectors in F.

  • Cramer's Rule for Ax = b.

    B j has b replacing column j of A; x j = det B j I det A

  • Free variable Xi.

    Column i has no pivot in elimination. We can give the n - r free variables any values, then Ax = b determines the r pivot variables (if solvable!).

  • Gram-Schmidt orthogonalization A = QR.

    Independent columns in A, orthonormal columns in Q. Each column q j of Q is a combination of the first j columns of A (and conversely, so R is upper triangular). Convention: diag(R) > o.

  • Identity matrix I (or In).

    Diagonal entries = 1, off-diagonal entries = 0.

  • Markov matrix M.

    All mij > 0 and each column sum is 1. Largest eigenvalue A = 1. If mij > 0, the columns of Mk approach the steady state eigenvector M s = s > O.

  • Multiplier eij.

    The pivot row j is multiplied by eij and subtracted from row i to eliminate the i, j entry: eij = (entry to eliminate) / (jth pivot).

  • Orthogonal subspaces.

    Every v in V is orthogonal to every w in W.

  • Partial pivoting.

    In each column, choose the largest available pivot to control roundoff; all multipliers have leij I < 1. See condition number.

  • Polar decomposition A = Q H.

    Orthogonal Q times positive (semi)definite H.

  • Projection p = a(aTblaTa) onto the line through a.

    P = aaT laTa has rank l.

  • Schwarz inequality

    Iv·wl < IIvll IIwll.Then IvTAwl2 < (vT Av)(wT Aw) for pos def A.

  • Similar matrices A and B.

    Every B = M-I AM has the same eigenvalues as A.

  • Stiffness matrix

    If x gives the movements of the nodes, K x gives the internal forces. K = ATe A where C has spring constants from Hooke's Law and Ax = stretching.

  • Toeplitz matrix.

    Constant down each diagonal = time-invariant (shift-invariant) filter.

  • Transpose matrix AT.

    Entries AL = Ajj. AT is n by In, AT A is square, symmetric, positive semidefinite. The transposes of AB and A-I are BT AT and (AT)-I.

  • Vandermonde matrix V.

    V c = b gives coefficients of p(x) = Co + ... + Cn_IXn- 1 with P(Xi) = bi. Vij = (Xi)j-I and det V = product of (Xk - Xi) for k > i.

×
Log in to StudySoup
Get Full Access to Elementary Geometry for College Students

Forgot password? Reset password here

Join StudySoup for FREE
Get Full Access to Elementary Geometry for College Students
Join with Email
Already have an account? Login here
Reset your password

I don't want to reset my password

Need help? Contact support

Need an Account? Is not associated with an account
Sign up
We're here to help

Having trouble accessing your account? Let us help you, contact support at +1(510) 944-1054 or support@studysoup.com

Got it, thanks!
Password Reset Request Sent An email has been sent to the email address associated to your account. Follow the link in the email to reset your password. If you're having trouble finding our email please check your spam folder
Got it, thanks!
Already have an Account? Is already in use
Log in
Incorrect Password The password used to log in with this account is incorrect
Try Again

Forgot password? Reset it here