×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Already have an account? Login here
×
Reset your password

Solutions for Chapter 4: Eigenvalues and Eigenvectors

Linear Algebra: A Modern Introduction (Available 2011 Titles Enhanced Web Assign) | 3rd Edition | ISBN: 9780538735452 | Authors: David Poole

Full solutions for Linear Algebra: A Modern Introduction (Available 2011 Titles Enhanced Web Assign) | 3rd Edition

ISBN: 9780538735452

Linear Algebra: A Modern Introduction (Available 2011 Titles Enhanced Web Assign) | 3rd Edition | ISBN: 9780538735452 | Authors: David Poole

Solutions for Chapter 4: Eigenvalues and Eigenvectors

Solutions for Chapter 4
4 5 0 372 Reviews
19
1
Textbook: Linear Algebra: A Modern Introduction (Available 2011 Titles Enhanced Web Assign)
Edition: 3
Author: David Poole
ISBN: 9780538735452

This textbook survival guide was created for the textbook: Linear Algebra: A Modern Introduction (Available 2011 Titles Enhanced Web Assign), edition: 3. Linear Algebra: A Modern Introduction (Available 2011 Titles Enhanced Web Assign) was written by and is associated to the ISBN: 9780538735452. This expansive textbook survival guide covers the following chapters and their solutions. Chapter 4: Eigenvalues and Eigenvectors includes 346 full step-by-step solutions. Since 346 problems in chapter 4: Eigenvalues and Eigenvectors have been answered, more than 66797 students have viewed full step-by-step solutions from this chapter.

Key Math Terms and definitions covered in this textbook
  • Cayley-Hamilton Theorem.

    peA) = det(A - AI) has peA) = zero matrix.

  • Column space C (A) =

    space of all combinations of the columns of A.

  • Echelon matrix U.

    The first nonzero entry (the pivot) in each row comes in a later column than the pivot in the previous row. All zero rows come last.

  • Fibonacci numbers

    0,1,1,2,3,5, ... satisfy Fn = Fn-l + Fn- 2 = (A7 -A~)I()q -A2). Growth rate Al = (1 + .J5) 12 is the largest eigenvalue of the Fibonacci matrix [ } A].

  • Full column rank r = n.

    Independent columns, N(A) = {O}, no free variables.

  • Fundamental Theorem.

    The nullspace N (A) and row space C (AT) are orthogonal complements in Rn(perpendicular from Ax = 0 with dimensions rand n - r). Applied to AT, the column space C(A) is the orthogonal complement of N(AT) in Rm.

  • Hilbert matrix hilb(n).

    Entries HU = 1/(i + j -1) = Jd X i- 1 xj-1dx. Positive definite but extremely small Amin and large condition number: H is ill-conditioned.

  • Kirchhoff's Laws.

    Current Law: net current (in minus out) is zero at each node. Voltage Law: Potential differences (voltage drops) add to zero around any closed loop.

  • Nilpotent matrix N.

    Some power of N is the zero matrix, N k = o. The only eigenvalue is A = 0 (repeated n times). Examples: triangular matrices with zero diagonal.

  • Orthogonal matrix Q.

    Square matrix with orthonormal columns, so QT = Q-l. Preserves length and angles, IIQxll = IIxll and (QX)T(Qy) = xTy. AlllAI = 1, with orthogonal eigenvectors. Examples: Rotation, reflection, permutation.

  • Partial pivoting.

    In each column, choose the largest available pivot to control roundoff; all multipliers have leij I < 1. See condition number.

  • Rayleigh quotient q (x) = X T Ax I x T x for symmetric A: Amin < q (x) < Amax.

    Those extremes are reached at the eigenvectors x for Amin(A) and Amax(A).

  • Rotation matrix

    R = [~ CS ] rotates the plane by () and R- 1 = RT rotates back by -(). Eigenvalues are eiO and e-iO , eigenvectors are (1, ±i). c, s = cos (), sin ().

  • Simplex method for linear programming.

    The minimum cost vector x * is found by moving from comer to lower cost comer along the edges of the feasible set (where the constraints Ax = b and x > 0 are satisfied). Minimum cost at a comer!

  • Special solutions to As = O.

    One free variable is Si = 1, other free variables = o.

  • Spectral Theorem A = QAQT.

    Real symmetric A has real A'S and orthonormal q's.

  • Subspace S of V.

    Any vector space inside V, including V and Z = {zero vector only}.

  • Unitary matrix UH = U T = U-I.

    Orthonormal columns (complex analog of Q).

  • Vector addition.

    v + w = (VI + WI, ... , Vn + Wn ) = diagonal of parallelogram.

  • Vector v in Rn.

    Sequence of n real numbers v = (VI, ... , Vn) = point in Rn.