×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Already have an account? Login here
×
Reset your password

Textbooks / Math / Elementary Linear Algebra with Applications 9

Elementary Linear Algebra with Applications 9th Edition - Solutions by Chapter

Elementary Linear Algebra with Applications | 9th Edition | ISBN: 9780132296540 | Authors: Bernard Kolman David Hill

Full solutions for Elementary Linear Algebra with Applications | 9th Edition

ISBN: 9780132296540

Elementary Linear Algebra with Applications | 9th Edition | ISBN: 9780132296540 | Authors: Bernard Kolman David Hill

Elementary Linear Algebra with Applications | 9th Edition - Solutions by Chapter

Solutions by Chapter
4 5 0 326 Reviews
Textbook: Elementary Linear Algebra with Applications
Edition: 9
Author: Bernard Kolman David Hill
ISBN: 9780132296540

Elementary Linear Algebra with Applications was written by and is associated to the ISBN: 9780132296540. This expansive textbook survival guide covers the following chapters: 57. Since problems from 57 chapters in Elementary Linear Algebra with Applications have been answered, more than 21741 students have viewed full step-by-step answer. The full step-by-step solution to problem in Elementary Linear Algebra with Applications were answered by , our top Math solution expert on 01/30/18, 04:18PM. This textbook survival guide was created for the textbook: Elementary Linear Algebra with Applications, edition: 9.

Key Math Terms and definitions covered in this textbook
  • Big formula for n by n determinants.

    Det(A) is a sum of n! terms. For each term: Multiply one entry from each row and column of A: rows in order 1, ... , nand column order given by a permutation P. Each of the n! P 's has a + or - sign.

  • Full column rank r = n.

    Independent columns, N(A) = {O}, no free variables.

  • Fundamental Theorem.

    The nullspace N (A) and row space C (AT) are orthogonal complements in Rn(perpendicular from Ax = 0 with dimensions rand n - r). Applied to AT, the column space C(A) is the orthogonal complement of N(AT) in Rm.

  • Identity matrix I (or In).

    Diagonal entries = 1, off-diagonal entries = 0.

  • Indefinite matrix.

    A symmetric matrix with eigenvalues of both signs (+ and - ).

  • Jordan form 1 = M- 1 AM.

    If A has s independent eigenvectors, its "generalized" eigenvector matrix M gives 1 = diag(lt, ... , 1s). The block his Akh +Nk where Nk has 1 's on diagonall. Each block has one eigenvalue Ak and one eigenvector.

  • Kirchhoff's Laws.

    Current Law: net current (in minus out) is zero at each node. Voltage Law: Potential differences (voltage drops) add to zero around any closed loop.

  • Krylov subspace Kj(A, b).

    The subspace spanned by b, Ab, ... , Aj-Ib. Numerical methods approximate A -I b by x j with residual b - Ax j in this subspace. A good basis for K j requires only multiplication by A at each step.

  • Markov matrix M.

    All mij > 0 and each column sum is 1. Largest eigenvalue A = 1. If mij > 0, the columns of Mk approach the steady state eigenvector M s = s > O.

  • Multiplier eij.

    The pivot row j is multiplied by eij and subtracted from row i to eliminate the i, j entry: eij = (entry to eliminate) / (jth pivot).

  • Orthonormal vectors q 1 , ... , q n·

    Dot products are q T q j = 0 if i =1= j and q T q i = 1. The matrix Q with these orthonormal columns has Q T Q = I. If m = n then Q T = Q -1 and q 1 ' ... , q n is an orthonormal basis for Rn : every v = L (v T q j )q j •

  • Permutation matrix P.

    There are n! orders of 1, ... , n. The n! P 's have the rows of I in those orders. P A puts the rows of A in the same order. P is even or odd (det P = 1 or -1) based on the number of row exchanges to reach I.

  • Projection matrix P onto subspace S.

    Projection p = P b is the closest point to b in S, error e = b - Pb is perpendicularto S. p 2 = P = pT, eigenvalues are 1 or 0, eigenvectors are in S or S...L. If columns of A = basis for S then P = A (AT A) -1 AT.

  • Rayleigh quotient q (x) = X T Ax I x T x for symmetric A: Amin < q (x) < Amax.

    Those extremes are reached at the eigenvectors x for Amin(A) and Amax(A).

  • Schur complement S, D - C A -} B.

    Appears in block elimination on [~ g ].

  • Standard basis for Rn.

    Columns of n by n identity matrix (written i ,j ,k in R3).

  • Subspace S of V.

    Any vector space inside V, including V and Z = {zero vector only}.

  • Trace of A

    = sum of diagonal entries = sum of eigenvalues of A. Tr AB = Tr BA.

  • Vandermonde matrix V.

    V c = b gives coefficients of p(x) = Co + ... + Cn_IXn- 1 with P(Xi) = bi. Vij = (Xi)j-I and det V = product of (Xk - Xi) for k > i.

  • Vector space V.

    Set of vectors such that all combinations cv + d w remain within V. Eight required rules are given in Section 3.1 for scalars c, d and vectors v, w.