×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Already have an account? Login here
×
Reset your password

Solutions for Chapter 1.1: Systems of Linear Equations

Elementary Linear Algebra with Applications | 9th Edition | ISBN: 9780132296540 | Authors: Bernard Kolman David Hill

Full solutions for Elementary Linear Algebra with Applications | 9th Edition

ISBN: 9780132296540

Elementary Linear Algebra with Applications | 9th Edition | ISBN: 9780132296540 | Authors: Bernard Kolman David Hill

Solutions for Chapter 1.1: Systems of Linear Equations

Solutions for Chapter 1.1
4 5 0 272 Reviews
11
4
Textbook: Elementary Linear Algebra with Applications
Edition: 9
Author: Bernard Kolman David Hill
ISBN: 9780132296540

This textbook survival guide was created for the textbook: Elementary Linear Algebra with Applications, edition: 9. Since 40 problems in chapter 1.1: Systems of Linear Equations have been answered, more than 58148 students have viewed full step-by-step solutions from this chapter. This expansive textbook survival guide covers the following chapters and their solutions. Elementary Linear Algebra with Applications was written by and is associated to the ISBN: 9780132296540. Chapter 1.1: Systems of Linear Equations includes 40 full step-by-step solutions.

Key Math Terms and definitions covered in this textbook
  • Change of basis matrix M.

    The old basis vectors v j are combinations L mij Wi of the new basis vectors. The coordinates of CI VI + ... + cnvn = dl wI + ... + dn Wn are related by d = M c. (For n = 2 set VI = mll WI +m21 W2, V2 = m12WI +m22w2.)

  • Circulant matrix C.

    Constant diagonals wrap around as in cyclic shift S. Every circulant is Col + CIS + ... + Cn_lSn - l . Cx = convolution c * x. Eigenvectors in F.

  • Diagonalizable matrix A.

    Must have n independent eigenvectors (in the columns of S; automatic with n different eigenvalues). Then S-I AS = A = eigenvalue matrix.

  • Echelon matrix U.

    The first nonzero entry (the pivot) in each row comes in a later column than the pivot in the previous row. All zero rows come last.

  • Elimination.

    A sequence of row operations that reduces A to an upper triangular U or to the reduced form R = rref(A). Then A = LU with multipliers eO in L, or P A = L U with row exchanges in P, or E A = R with an invertible E.

  • Factorization

    A = L U. If elimination takes A to U without row exchanges, then the lower triangular L with multipliers eij (and eii = 1) brings U back to A.

  • Fourier matrix F.

    Entries Fjk = e21Cijk/n give orthogonal columns FT F = nI. Then y = Fe is the (inverse) Discrete Fourier Transform Y j = L cke21Cijk/n.

  • Free columns of A.

    Columns without pivots; these are combinations of earlier columns.

  • Hilbert matrix hilb(n).

    Entries HU = 1/(i + j -1) = Jd X i- 1 xj-1dx. Positive definite but extremely small Amin and large condition number: H is ill-conditioned.

  • Identity matrix I (or In).

    Diagonal entries = 1, off-diagonal entries = 0.

  • Length II x II.

    Square root of x T x (Pythagoras in n dimensions).

  • Network.

    A directed graph that has constants Cl, ... , Cm associated with the edges.

  • Normal matrix.

    If N NT = NT N, then N has orthonormal (complex) eigenvectors.

  • Pascal matrix

    Ps = pascal(n) = the symmetric matrix with binomial entries (i1~;2). Ps = PL Pu all contain Pascal's triangle with det = 1 (see Pascal in the index).

  • Semidefinite matrix A.

    (Positive) semidefinite: all x T Ax > 0, all A > 0; A = any RT R.

  • Singular matrix A.

    A square matrix that has no inverse: det(A) = o.

  • Stiffness matrix

    If x gives the movements of the nodes, K x gives the internal forces. K = ATe A where C has spring constants from Hooke's Law and Ax = stretching.

  • Trace of A

    = sum of diagonal entries = sum of eigenvalues of A. Tr AB = Tr BA.

  • Vector addition.

    v + w = (VI + WI, ... , Vn + Wn ) = diagonal of parallelogram.

  • Volume of box.

    The rows (or the columns) of A generate a box with volume I det(A) I.