×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 3.3: Cofactor Expansion

Elementary Linear Algebra with Applications | 9th Edition | ISBN: 9780132296540 | Authors: Bernard Kolman David Hill

Full solutions for Elementary Linear Algebra with Applications | 9th Edition

ISBN: 9780132296540

Elementary Linear Algebra with Applications | 9th Edition | ISBN: 9780132296540 | Authors: Bernard Kolman David Hill

Solutions for Chapter 3.3: Cofactor Expansion

Solutions for Chapter 3.3
4 5 0 299 Reviews
27
4
Textbook: Elementary Linear Algebra with Applications
Edition: 9
Author: Bernard Kolman David Hill
ISBN: 9780132296540

Elementary Linear Algebra with Applications was written by and is associated to the ISBN: 9780132296540. Since 19 problems in chapter 3.3: Cofactor Expansion have been answered, more than 12523 students have viewed full step-by-step solutions from this chapter. This expansive textbook survival guide covers the following chapters and their solutions. This textbook survival guide was created for the textbook: Elementary Linear Algebra with Applications, edition: 9. Chapter 3.3: Cofactor Expansion includes 19 full step-by-step solutions.

Key Math Terms and definitions covered in this textbook
  • Affine transformation

    Tv = Av + Vo = linear transformation plus shift.

  • Associative Law (AB)C = A(BC).

    Parentheses can be removed to leave ABC.

  • Cayley-Hamilton Theorem.

    peA) = det(A - AI) has peA) = zero matrix.

  • Diagonalizable matrix A.

    Must have n independent eigenvectors (in the columns of S; automatic with n different eigenvalues). Then S-I AS = A = eigenvalue matrix.

  • Dimension of vector space

    dim(V) = number of vectors in any basis for V.

  • Free columns of A.

    Columns without pivots; these are combinations of earlier columns.

  • Full column rank r = n.

    Independent columns, N(A) = {O}, no free variables.

  • Fundamental Theorem.

    The nullspace N (A) and row space C (AT) are orthogonal complements in Rn(perpendicular from Ax = 0 with dimensions rand n - r). Applied to AT, the column space C(A) is the orthogonal complement of N(AT) in Rm.

  • Lucas numbers

    Ln = 2,J, 3, 4, ... satisfy Ln = L n- l +Ln- 2 = A1 +A~, with AI, A2 = (1 ± -/5)/2 from the Fibonacci matrix U~]' Compare Lo = 2 with Fo = O.

  • Network.

    A directed graph that has constants Cl, ... , Cm associated with the edges.

  • Outer product uv T

    = column times row = rank one matrix.

  • Partial pivoting.

    In each column, choose the largest available pivot to control roundoff; all multipliers have leij I < 1. See condition number.

  • Row space C (AT) = all combinations of rows of A.

    Column vectors by convention.

  • Schur complement S, D - C A -} B.

    Appears in block elimination on [~ g ].

  • Simplex method for linear programming.

    The minimum cost vector x * is found by moving from comer to lower cost comer along the edges of the feasible set (where the constraints Ax = b and x > 0 are satisfied). Minimum cost at a comer!

  • Skew-symmetric matrix K.

    The transpose is -K, since Kij = -Kji. Eigenvalues are pure imaginary, eigenvectors are orthogonal, eKt is an orthogonal matrix.

  • Sum V + W of subs paces.

    Space of all (v in V) + (w in W). Direct sum: V n W = to}.

  • Toeplitz matrix.

    Constant down each diagonal = time-invariant (shift-invariant) filter.

  • Unitary matrix UH = U T = U-I.

    Orthonormal columns (complex analog of Q).

  • Vector v in Rn.

    Sequence of n real numbers v = (VI, ... , Vn) = point in Rn.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password