Solutions for Chapter 1-2: Properties of Real Numbers

Algebra 2, Student Edition (MERRILL ALGEBRA 2) | 1st Edition | ISBN: 9780078738302 | Authors: McGraw-Hill Education

Full solutions for Algebra 2, Student Edition (MERRILL ALGEBRA 2) | 1st Edition

ISBN: 9780078738302

Algebra 2, Student Edition (MERRILL ALGEBRA 2) | 1st Edition | ISBN: 9780078738302 | Authors: McGraw-Hill Education

Solutions for Chapter 1-2: Properties of Real Numbers

Solutions for Chapter 1-2
4 5 0 345 Reviews
24
3
Textbook: Algebra 2, Student Edition (MERRILL ALGEBRA 2)
Edition: 1
Author: McGraw-Hill Education
ISBN: 9780078738302

Algebra 2, Student Edition (MERRILL ALGEBRA 2) was written by and is associated to the ISBN: 9780078738302. This expansive textbook survival guide covers the following chapters and their solutions. Chapter 1-2: Properties of Real Numbers includes 75 full step-by-step solutions. This textbook survival guide was created for the textbook: Algebra 2, Student Edition (MERRILL ALGEBRA 2), edition: 1. Since 75 problems in chapter 1-2: Properties of Real Numbers have been answered, more than 26074 students have viewed full step-by-step solutions from this chapter.

Key Math Terms and definitions covered in this textbook
  • Block matrix.

    A matrix can be partitioned into matrix blocks, by cuts between rows and/or between columns. Block multiplication ofAB is allowed if the block shapes permit.

  • Change of basis matrix M.

    The old basis vectors v j are combinations L mij Wi of the new basis vectors. The coordinates of CI VI + ... + cnvn = dl wI + ... + dn Wn are related by d = M c. (For n = 2 set VI = mll WI +m21 W2, V2 = m12WI +m22w2.)

  • Cholesky factorization

    A = CTC = (L.J]))(L.J]))T for positive definite A.

  • Circulant matrix C.

    Constant diagonals wrap around as in cyclic shift S. Every circulant is Col + CIS + ... + Cn_lSn - l . Cx = convolution c * x. Eigenvectors in F.

  • Fibonacci numbers

    0,1,1,2,3,5, ... satisfy Fn = Fn-l + Fn- 2 = (A7 -A~)I()q -A2). Growth rate Al = (1 + .J5) 12 is the largest eigenvalue of the Fibonacci matrix [ } A].

  • Four Fundamental Subspaces C (A), N (A), C (AT), N (AT).

    Use AT for complex A.

  • Fundamental Theorem.

    The nullspace N (A) and row space C (AT) are orthogonal complements in Rn(perpendicular from Ax = 0 with dimensions rand n - r). Applied to AT, the column space C(A) is the orthogonal complement of N(AT) in Rm.

  • Hypercube matrix pl.

    Row n + 1 counts corners, edges, faces, ... of a cube in Rn.

  • Independent vectors VI, .. " vk.

    No combination cl VI + ... + qVk = zero vector unless all ci = O. If the v's are the columns of A, the only solution to Ax = 0 is x = o.

  • Iterative method.

    A sequence of steps intended to approach the desired solution.

  • Network.

    A directed graph that has constants Cl, ... , Cm associated with the edges.

  • Nilpotent matrix N.

    Some power of N is the zero matrix, N k = o. The only eigenvalue is A = 0 (repeated n times). Examples: triangular matrices with zero diagonal.

  • Nullspace N (A)

    = All solutions to Ax = O. Dimension n - r = (# columns) - rank.

  • Orthonormal vectors q 1 , ... , q n·

    Dot products are q T q j = 0 if i =1= j and q T q i = 1. The matrix Q with these orthonormal columns has Q T Q = I. If m = n then Q T = Q -1 and q 1 ' ... , q n is an orthonormal basis for Rn : every v = L (v T q j )q j •

  • Outer product uv T

    = column times row = rank one matrix.

  • Partial pivoting.

    In each column, choose the largest available pivot to control roundoff; all multipliers have leij I < 1. See condition number.

  • Rank r (A)

    = number of pivots = dimension of column space = dimension of row space.

  • Simplex method for linear programming.

    The minimum cost vector x * is found by moving from comer to lower cost comer along the edges of the feasible set (where the constraints Ax = b and x > 0 are satisfied). Minimum cost at a comer!

  • Vandermonde matrix V.

    V c = b gives coefficients of p(x) = Co + ... + Cn_IXn- 1 with P(Xi) = bi. Vij = (Xi)j-I and det V = product of (Xk - Xi) for k > i.

  • Vector addition.

    v + w = (VI + WI, ... , Vn + Wn ) = diagonal of parallelogram.

×
Log in to StudySoup
Get Full Access to Thousands of Study Materials at Your School

Forgot password? Reset password here

Join StudySoup for FREE
Get Full Access to Thousands of Study Materials at Your School
Join with Email
Already have an account? Login here
Reset your password

I don't want to reset my password

Need help? Contact support

Need an Account? Is not associated with an account
Sign up
We're here to help

Having trouble accessing your account? Let us help you, contact support at +1(510) 944-1054 or support@studysoup.com

Got it, thanks!
Password Reset Request Sent An email has been sent to the email address associated to your account. Follow the link in the email to reset your password. If you're having trouble finding our email please check your spam folder
Got it, thanks!
Already have an Account? Is already in use
Log in
Incorrect Password The password used to log in with this account is incorrect
Try Again

Forgot password? Reset it here