×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 2-1: Relations and Functions

Algebra 2, Student Edition (MERRILL ALGEBRA 2) | 1st Edition | ISBN: 9780078738302 | Authors: McGraw-Hill Education

Full solutions for Algebra 2, Student Edition (MERRILL ALGEBRA 2) | 1st Edition

ISBN: 9780078738302

Algebra 2, Student Edition (MERRILL ALGEBRA 2) | 1st Edition | ISBN: 9780078738302 | Authors: McGraw-Hill Education

Solutions for Chapter 2-1: Relations and Functions

Solutions for Chapter 2-1
4 5 0 301 Reviews
22
0
Textbook: Algebra 2, Student Edition (MERRILL ALGEBRA 2)
Edition: 1
Author: McGraw-Hill Education
ISBN: 9780078738302

Chapter 2-1: Relations and Functions includes 70 full step-by-step solutions. Since 70 problems in chapter 2-1: Relations and Functions have been answered, more than 56336 students have viewed full step-by-step solutions from this chapter. This textbook survival guide was created for the textbook: Algebra 2, Student Edition (MERRILL ALGEBRA 2), edition: 1. This expansive textbook survival guide covers the following chapters and their solutions. Algebra 2, Student Edition (MERRILL ALGEBRA 2) was written by and is associated to the ISBN: 9780078738302.

Key Math Terms and definitions covered in this textbook
  • Big formula for n by n determinants.

    Det(A) is a sum of n! terms. For each term: Multiply one entry from each row and column of A: rows in order 1, ... , nand column order given by a permutation P. Each of the n! P 's has a + or - sign.

  • Change of basis matrix M.

    The old basis vectors v j are combinations L mij Wi of the new basis vectors. The coordinates of CI VI + ... + cnvn = dl wI + ... + dn Wn are related by d = M c. (For n = 2 set VI = mll WI +m21 W2, V2 = m12WI +m22w2.)

  • Dot product = Inner product x T y = XI Y 1 + ... + Xn Yn.

    Complex dot product is x T Y . Perpendicular vectors have x T y = O. (AB)ij = (row i of A)T(column j of B).

  • Elimination matrix = Elementary matrix Eij.

    The identity matrix with an extra -eij in the i, j entry (i #- j). Then Eij A subtracts eij times row j of A from row i.

  • Fibonacci numbers

    0,1,1,2,3,5, ... satisfy Fn = Fn-l + Fn- 2 = (A7 -A~)I()q -A2). Growth rate Al = (1 + .J5) 12 is the largest eigenvalue of the Fibonacci matrix [ } A].

  • Hypercube matrix pl.

    Row n + 1 counts corners, edges, faces, ... of a cube in Rn.

  • Kirchhoff's Laws.

    Current Law: net current (in minus out) is zero at each node. Voltage Law: Potential differences (voltage drops) add to zero around any closed loop.

  • Least squares solution X.

    The vector x that minimizes the error lie 112 solves AT Ax = ATb. Then e = b - Ax is orthogonal to all columns of A.

  • Length II x II.

    Square root of x T x (Pythagoras in n dimensions).

  • Linear transformation T.

    Each vector V in the input space transforms to T (v) in the output space, and linearity requires T(cv + dw) = c T(v) + d T(w). Examples: Matrix multiplication A v, differentiation and integration in function space.

  • Nullspace N (A)

    = All solutions to Ax = O. Dimension n - r = (# columns) - rank.

  • Orthogonal subspaces.

    Every v in V is orthogonal to every w in W.

  • Pivot columns of A.

    Columns that contain pivots after row reduction. These are not combinations of earlier columns. The pivot columns are a basis for the column space.

  • Plane (or hyperplane) in Rn.

    Vectors x with aT x = O. Plane is perpendicular to a =1= O.

  • Polar decomposition A = Q H.

    Orthogonal Q times positive (semi)definite H.

  • Positive definite matrix A.

    Symmetric matrix with positive eigenvalues and positive pivots. Definition: x T Ax > 0 unless x = O. Then A = LDLT with diag(D» O.

  • Rank r (A)

    = number of pivots = dimension of column space = dimension of row space.

  • Rayleigh quotient q (x) = X T Ax I x T x for symmetric A: Amin < q (x) < Amax.

    Those extremes are reached at the eigenvectors x for Amin(A) and Amax(A).

  • Unitary matrix UH = U T = U-I.

    Orthonormal columns (complex analog of Q).

  • Vector v in Rn.

    Sequence of n real numbers v = (VI, ... , Vn) = point in Rn.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password