×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 9-5: Base e and Natural Logarithms

Algebra 2, Student Edition (MERRILL ALGEBRA 2) | 1st Edition | ISBN: 9780078738302 | Authors: McGraw-Hill Education

Full solutions for Algebra 2, Student Edition (MERRILL ALGEBRA 2) | 1st Edition

ISBN: 9780078738302

Algebra 2, Student Edition (MERRILL ALGEBRA 2) | 1st Edition | ISBN: 9780078738302 | Authors: McGraw-Hill Education

Solutions for Chapter 9-5: Base e and Natural Logarithms

Solutions for Chapter 9-5
4 5 0 407 Reviews
15
2
Textbook: Algebra 2, Student Edition (MERRILL ALGEBRA 2)
Edition: 1
Author: McGraw-Hill Education
ISBN: 9780078738302

This textbook survival guide was created for the textbook: Algebra 2, Student Edition (MERRILL ALGEBRA 2), edition: 1. This expansive textbook survival guide covers the following chapters and their solutions. Algebra 2, Student Edition (MERRILL ALGEBRA 2) was written by and is associated to the ISBN: 9780078738302. Chapter 9-5: Base e and Natural Logarithms includes 81 full step-by-step solutions. Since 81 problems in chapter 9-5: Base e and Natural Logarithms have been answered, more than 52223 students have viewed full step-by-step solutions from this chapter.

Key Math Terms and definitions covered in this textbook
  • Augmented matrix [A b].

    Ax = b is solvable when b is in the column space of A; then [A b] has the same rank as A. Elimination on [A b] keeps equations correct.

  • Basis for V.

    Independent vectors VI, ... , v d whose linear combinations give each vector in V as v = CIVI + ... + CdVd. V has many bases, each basis gives unique c's. A vector space has many bases!

  • Big formula for n by n determinants.

    Det(A) is a sum of n! terms. For each term: Multiply one entry from each row and column of A: rows in order 1, ... , nand column order given by a permutation P. Each of the n! P 's has a + or - sign.

  • Characteristic equation det(A - AI) = O.

    The n roots are the eigenvalues of A.

  • Circulant matrix C.

    Constant diagonals wrap around as in cyclic shift S. Every circulant is Col + CIS + ... + Cn_lSn - l . Cx = convolution c * x. Eigenvectors in F.

  • Column picture of Ax = b.

    The vector b becomes a combination of the columns of A. The system is solvable only when b is in the column space C (A).

  • Conjugate Gradient Method.

    A sequence of steps (end of Chapter 9) to solve positive definite Ax = b by minimizing !x T Ax - x Tb over growing Krylov subspaces.

  • Determinant IAI = det(A).

    Defined by det I = 1, sign reversal for row exchange, and linearity in each row. Then IAI = 0 when A is singular. Also IABI = IAIIBI and

  • Elimination.

    A sequence of row operations that reduces A to an upper triangular U or to the reduced form R = rref(A). Then A = LU with multipliers eO in L, or P A = L U with row exchanges in P, or E A = R with an invertible E.

  • Factorization

    A = L U. If elimination takes A to U without row exchanges, then the lower triangular L with multipliers eij (and eii = 1) brings U back to A.

  • Fibonacci numbers

    0,1,1,2,3,5, ... satisfy Fn = Fn-l + Fn- 2 = (A7 -A~)I()q -A2). Growth rate Al = (1 + .J5) 12 is the largest eigenvalue of the Fibonacci matrix [ } A].

  • Free columns of A.

    Columns without pivots; these are combinations of earlier columns.

  • Free variable Xi.

    Column i has no pivot in elimination. We can give the n - r free variables any values, then Ax = b determines the r pivot variables (if solvable!).

  • Full column rank r = n.

    Independent columns, N(A) = {O}, no free variables.

  • Hankel matrix H.

    Constant along each antidiagonal; hij depends on i + j.

  • Length II x II.

    Square root of x T x (Pythagoras in n dimensions).

  • Orthonormal vectors q 1 , ... , q n·

    Dot products are q T q j = 0 if i =1= j and q T q i = 1. The matrix Q with these orthonormal columns has Q T Q = I. If m = n then Q T = Q -1 and q 1 ' ... , q n is an orthonormal basis for Rn : every v = L (v T q j )q j •

  • Permutation matrix P.

    There are n! orders of 1, ... , n. The n! P 's have the rows of I in those orders. P A puts the rows of A in the same order. P is even or odd (det P = 1 or -1) based on the number of row exchanges to reach I.

  • Triangle inequality II u + v II < II u II + II v II.

    For matrix norms II A + B II < II A II + II B II·

  • Vector space V.

    Set of vectors such that all combinations cv + d w remain within V. Eight required rules are given in Section 3.1 for scalars c, d and vectors v, w.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password