×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 11-6: Recursion and Special Sequences

Algebra 2, Student Edition (MERRILL ALGEBRA 2) | 1st Edition | ISBN: 9780078738302 | Authors: McGraw-Hill Education

Full solutions for Algebra 2, Student Edition (MERRILL ALGEBRA 2) | 1st Edition

ISBN: 9780078738302

Algebra 2, Student Edition (MERRILL ALGEBRA 2) | 1st Edition | ISBN: 9780078738302 | Authors: McGraw-Hill Education

Solutions for Chapter 11-6: Recursion and Special Sequences

Solutions for Chapter 11-6
4 5 0 380 Reviews
10
4
Textbook: Algebra 2, Student Edition (MERRILL ALGEBRA 2)
Edition: 1
Author: McGraw-Hill Education
ISBN: 9780078738302

This expansive textbook survival guide covers the following chapters and their solutions. This textbook survival guide was created for the textbook: Algebra 2, Student Edition (MERRILL ALGEBRA 2), edition: 1. Algebra 2, Student Edition (MERRILL ALGEBRA 2) was written by and is associated to the ISBN: 9780078738302. Chapter 11-6: Recursion and Special Sequences includes 48 full step-by-step solutions. Since 48 problems in chapter 11-6: Recursion and Special Sequences have been answered, more than 61378 students have viewed full step-by-step solutions from this chapter.

Key Math Terms and definitions covered in this textbook
  • Affine transformation

    Tv = Av + Vo = linear transformation plus shift.

  • Block matrix.

    A matrix can be partitioned into matrix blocks, by cuts between rows and/or between columns. Block multiplication ofAB is allowed if the block shapes permit.

  • Cofactor Cij.

    Remove row i and column j; multiply the determinant by (-I)i + j •

  • Dimension of vector space

    dim(V) = number of vectors in any basis for V.

  • Elimination matrix = Elementary matrix Eij.

    The identity matrix with an extra -eij in the i, j entry (i #- j). Then Eij A subtracts eij times row j of A from row i.

  • Gauss-Jordan method.

    Invert A by row operations on [A I] to reach [I A-I].

  • Hermitian matrix A H = AT = A.

    Complex analog a j i = aU of a symmetric matrix.

  • Network.

    A directed graph that has constants Cl, ... , Cm associated with the edges.

  • Orthogonal matrix Q.

    Square matrix with orthonormal columns, so QT = Q-l. Preserves length and angles, IIQxll = IIxll and (QX)T(Qy) = xTy. AlllAI = 1, with orthogonal eigenvectors. Examples: Rotation, reflection, permutation.

  • Outer product uv T

    = column times row = rank one matrix.

  • Particular solution x p.

    Any solution to Ax = b; often x p has free variables = o.

  • Pascal matrix

    Ps = pascal(n) = the symmetric matrix with binomial entries (i1~;2). Ps = PL Pu all contain Pascal's triangle with det = 1 (see Pascal in the index).

  • Plane (or hyperplane) in Rn.

    Vectors x with aT x = O. Plane is perpendicular to a =1= O.

  • Projection p = a(aTblaTa) onto the line through a.

    P = aaT laTa has rank l.

  • Reflection matrix (Householder) Q = I -2uuT.

    Unit vector u is reflected to Qu = -u. All x intheplanemirroruTx = o have Qx = x. Notice QT = Q-1 = Q.

  • Saddle point of I(x}, ... ,xn ).

    A point where the first derivatives of I are zero and the second derivative matrix (a2 II aXi ax j = Hessian matrix) is indefinite.

  • Semidefinite matrix A.

    (Positive) semidefinite: all x T Ax > 0, all A > 0; A = any RT R.

  • Subspace S of V.

    Any vector space inside V, including V and Z = {zero vector only}.

  • Symmetric matrix A.

    The transpose is AT = A, and aU = a ji. A-I is also symmetric.

  • Vector addition.

    v + w = (VI + WI, ... , Vn + Wn ) = diagonal of parallelogram.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password