×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 4: Apply Triangle Sum Properties

Geometry (Holt McDougal Larson Geometry) | 1st Edition | ISBN: 9780618595402 | Authors: Ron Larson Laurie Boswell Timothy D. Kanold, Lee Stiff

Full solutions for Geometry (Holt McDougal Larson Geometry) | 1st Edition

ISBN: 9780618595402

Geometry (Holt McDougal Larson Geometry) | 1st Edition | ISBN: 9780618595402 | Authors: Ron Larson Laurie Boswell Timothy D. Kanold, Lee Stiff

Solutions for Chapter 4: Apply Triangle Sum Properties

Solutions for Chapter 4
4 5 0 250 Reviews
10
4
Textbook: Geometry (Holt McDougal Larson Geometry)
Edition: 1
Author: Ron Larson Laurie Boswell Timothy D. Kanold, Lee Stiff
ISBN: 9780618595402

Geometry (Holt McDougal Larson Geometry) was written by and is associated to the ISBN: 9780618595402. This expansive textbook survival guide covers the following chapters and their solutions. Chapter 4: Apply Triangle Sum Properties includes 416 full step-by-step solutions. Since 416 problems in chapter 4: Apply Triangle Sum Properties have been answered, more than 28932 students have viewed full step-by-step solutions from this chapter. This textbook survival guide was created for the textbook: Geometry (Holt McDougal Larson Geometry), edition: 1.

Key Math Terms and definitions covered in this textbook
  • Big formula for n by n determinants.

    Det(A) is a sum of n! terms. For each term: Multiply one entry from each row and column of A: rows in order 1, ... , nand column order given by a permutation P. Each of the n! P 's has a + or - sign.

  • Column space C (A) =

    space of all combinations of the columns of A.

  • Dimension of vector space

    dim(V) = number of vectors in any basis for V.

  • Dot product = Inner product x T y = XI Y 1 + ... + Xn Yn.

    Complex dot product is x T Y . Perpendicular vectors have x T y = O. (AB)ij = (row i of A)T(column j of B).

  • Exponential eAt = I + At + (At)2 12! + ...

    has derivative AeAt; eAt u(O) solves u' = Au.

  • Fibonacci numbers

    0,1,1,2,3,5, ... satisfy Fn = Fn-l + Fn- 2 = (A7 -A~)I()q -A2). Growth rate Al = (1 + .J5) 12 is the largest eigenvalue of the Fibonacci matrix [ } A].

  • Fundamental Theorem.

    The nullspace N (A) and row space C (AT) are orthogonal complements in Rn(perpendicular from Ax = 0 with dimensions rand n - r). Applied to AT, the column space C(A) is the orthogonal complement of N(AT) in Rm.

  • Hermitian matrix A H = AT = A.

    Complex analog a j i = aU of a symmetric matrix.

  • Markov matrix M.

    All mij > 0 and each column sum is 1. Largest eigenvalue A = 1. If mij > 0, the columns of Mk approach the steady state eigenvector M s = s > O.

  • Orthogonal subspaces.

    Every v in V is orthogonal to every w in W.

  • Orthonormal vectors q 1 , ... , q n·

    Dot products are q T q j = 0 if i =1= j and q T q i = 1. The matrix Q with these orthonormal columns has Q T Q = I. If m = n then Q T = Q -1 and q 1 ' ... , q n is an orthonormal basis for Rn : every v = L (v T q j )q j •

  • Partial pivoting.

    In each column, choose the largest available pivot to control roundoff; all multipliers have leij I < 1. See condition number.

  • Saddle point of I(x}, ... ,xn ).

    A point where the first derivatives of I are zero and the second derivative matrix (a2 II aXi ax j = Hessian matrix) is indefinite.

  • Similar matrices A and B.

    Every B = M-I AM has the same eigenvalues as A.

  • Singular Value Decomposition

    (SVD) A = U:E VT = (orthogonal) ( diag)( orthogonal) First r columns of U and V are orthonormal bases of C (A) and C (AT), AVi = O'iUi with singular value O'i > O. Last columns are orthonormal bases of nullspaces.

  • Special solutions to As = O.

    One free variable is Si = 1, other free variables = o.

  • Spectral Theorem A = QAQT.

    Real symmetric A has real A'S and orthonormal q's.

  • Unitary matrix UH = U T = U-I.

    Orthonormal columns (complex analog of Q).

  • Vandermonde matrix V.

    V c = b gives coefficients of p(x) = Co + ... + Cn_IXn- 1 with P(Xi) = bi. Vij = (Xi)j-I and det V = product of (Xk - Xi) for k > i.

  • Volume of box.

    The rows (or the columns) of A generate a box with volume I det(A) I.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password