×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Already have an account? Login here
×
Reset your password

Textbooks / Math / A Transition to Advanced Mathematics 7

A Transition to Advanced Mathematics 7th Edition - Solutions by Chapter

A Transition to Advanced Mathematics | 7th Edition | ISBN: 9780495562023 | Authors: Douglas Smith, Maurice Eggen, Richard St. Andre

Full solutions for A Transition to Advanced Mathematics | 7th Edition

ISBN: 9780495562023

A Transition to Advanced Mathematics | 7th Edition | ISBN: 9780495562023 | Authors: Douglas Smith, Maurice Eggen, Richard St. Andre

A Transition to Advanced Mathematics | 7th Edition - Solutions by Chapter

Solutions by Chapter
4 5 0 313 Reviews
Textbook: A Transition to Advanced Mathematics
Edition: 7
Author: Douglas Smith, Maurice Eggen, Richard St. Andre
ISBN: 9780495562023

This expansive textbook survival guide covers the following chapters: 39. This textbook survival guide was created for the textbook: A Transition to Advanced Mathematics, edition: 7. The full step-by-step solution to problem in A Transition to Advanced Mathematics were answered by , our top Math solution expert on 03/05/18, 08:54PM. A Transition to Advanced Mathematics was written by and is associated to the ISBN: 9780495562023. Since problems from 39 chapters in A Transition to Advanced Mathematics have been answered, more than 26517 students have viewed full step-by-step answer.

Key Math Terms and definitions covered in this textbook
  • Back substitution.

    Upper triangular systems are solved in reverse order Xn to Xl.

  • Basis for V.

    Independent vectors VI, ... , v d whose linear combinations give each vector in V as v = CIVI + ... + CdVd. V has many bases, each basis gives unique c's. A vector space has many bases!

  • Block matrix.

    A matrix can be partitioned into matrix blocks, by cuts between rows and/or between columns. Block multiplication ofAB is allowed if the block shapes permit.

  • Change of basis matrix M.

    The old basis vectors v j are combinations L mij Wi of the new basis vectors. The coordinates of CI VI + ... + cnvn = dl wI + ... + dn Wn are related by d = M c. (For n = 2 set VI = mll WI +m21 W2, V2 = m12WI +m22w2.)

  • Cholesky factorization

    A = CTC = (L.J]))(L.J]))T for positive definite A.

  • Circulant matrix C.

    Constant diagonals wrap around as in cyclic shift S. Every circulant is Col + CIS + ... + Cn_lSn - l . Cx = convolution c * x. Eigenvectors in F.

  • Column picture of Ax = b.

    The vector b becomes a combination of the columns of A. The system is solvable only when b is in the column space C (A).

  • Companion matrix.

    Put CI, ... ,Cn in row n and put n - 1 ones just above the main diagonal. Then det(A - AI) = ±(CI + c2A + C3A 2 + .•. + cnA n-l - An).

  • Diagonalizable matrix A.

    Must have n independent eigenvectors (in the columns of S; automatic with n different eigenvalues). Then S-I AS = A = eigenvalue matrix.

  • Ellipse (or ellipsoid) x T Ax = 1.

    A must be positive definite; the axes of the ellipse are eigenvectors of A, with lengths 1/.JI. (For IIx II = 1 the vectors y = Ax lie on the ellipse IIA-1 yll2 = Y T(AAT)-1 Y = 1 displayed by eigshow; axis lengths ad

  • Incidence matrix of a directed graph.

    The m by n edge-node incidence matrix has a row for each edge (node i to node j), with entries -1 and 1 in columns i and j .

  • Independent vectors VI, .. " vk.

    No combination cl VI + ... + qVk = zero vector unless all ci = O. If the v's are the columns of A, the only solution to Ax = 0 is x = o.

  • Krylov subspace Kj(A, b).

    The subspace spanned by b, Ab, ... , Aj-Ib. Numerical methods approximate A -I b by x j with residual b - Ax j in this subspace. A good basis for K j requires only multiplication by A at each step.

  • Left inverse A+.

    If A has full column rank n, then A+ = (AT A)-I AT has A+ A = In.

  • Linear transformation T.

    Each vector V in the input space transforms to T (v) in the output space, and linearity requires T(cv + dw) = c T(v) + d T(w). Examples: Matrix multiplication A v, differentiation and integration in function space.

  • Plane (or hyperplane) in Rn.

    Vectors x with aT x = O. Plane is perpendicular to a =1= O.

  • Rank one matrix A = uvT f=. O.

    Column and row spaces = lines cu and cv.

  • Reflection matrix (Householder) Q = I -2uuT.

    Unit vector u is reflected to Qu = -u. All x intheplanemirroruTx = o have Qx = x. Notice QT = Q-1 = Q.

  • Subspace S of V.

    Any vector space inside V, including V and Z = {zero vector only}.

  • Symmetric matrix A.

    The transpose is AT = A, and aU = a ji. A-I is also symmetric.