×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 3.1: Relations and Partitions

A Transition to Advanced Mathematics | 7th Edition | ISBN: 9780495562023 | Authors: Douglas Smith, Maurice Eggen, Richard St. Andre

Full solutions for A Transition to Advanced Mathematics | 7th Edition

ISBN: 9780495562023

A Transition to Advanced Mathematics | 7th Edition | ISBN: 9780495562023 | Authors: Douglas Smith, Maurice Eggen, Richard St. Andre

Solutions for Chapter 3.1: Relations and Partitions

A Transition to Advanced Mathematics was written by and is associated to the ISBN: 9780495562023. Since 15 problems in chapter 3.1: Relations and Partitions have been answered, more than 5793 students have viewed full step-by-step solutions from this chapter. This expansive textbook survival guide covers the following chapters and their solutions. This textbook survival guide was created for the textbook: A Transition to Advanced Mathematics, edition: 7. Chapter 3.1: Relations and Partitions includes 15 full step-by-step solutions.

Key Math Terms and definitions covered in this textbook
  • Block matrix.

    A matrix can be partitioned into matrix blocks, by cuts between rows and/or between columns. Block multiplication ofAB is allowed if the block shapes permit.

  • Column picture of Ax = b.

    The vector b becomes a combination of the columns of A. The system is solvable only when b is in the column space C (A).

  • Commuting matrices AB = BA.

    If diagonalizable, they share n eigenvectors.

  • Complete solution x = x p + Xn to Ax = b.

    (Particular x p) + (x n in nullspace).

  • Dot product = Inner product x T y = XI Y 1 + ... + Xn Yn.

    Complex dot product is x T Y . Perpendicular vectors have x T y = O. (AB)ij = (row i of A)T(column j of B).

  • Factorization

    A = L U. If elimination takes A to U without row exchanges, then the lower triangular L with multipliers eij (and eii = 1) brings U back to A.

  • Hessenberg matrix H.

    Triangular matrix with one extra nonzero adjacent diagonal.

  • Iterative method.

    A sequence of steps intended to approach the desired solution.

  • Left nullspace N (AT).

    Nullspace of AT = "left nullspace" of A because y T A = OT.

  • Linear combination cv + d w or L C jV j.

    Vector addition and scalar multiplication.

  • Outer product uv T

    = column times row = rank one matrix.

  • Partial pivoting.

    In each column, choose the largest available pivot to control roundoff; all multipliers have leij I < 1. See condition number.

  • Random matrix rand(n) or randn(n).

    MATLAB creates a matrix with random entries, uniformly distributed on [0 1] for rand and standard normal distribution for randn.

  • Schur complement S, D - C A -} B.

    Appears in block elimination on [~ g ].

  • Spanning set.

    Combinations of VI, ... ,Vm fill the space. The columns of A span C (A)!

  • Special solutions to As = O.

    One free variable is Si = 1, other free variables = o.

  • Spectral Theorem A = QAQT.

    Real symmetric A has real A'S and orthonormal q's.

  • Sum V + W of subs paces.

    Space of all (v in V) + (w in W). Direct sum: V n W = to}.

  • Trace of A

    = sum of diagonal entries = sum of eigenvalues of A. Tr AB = Tr BA.

  • Volume of box.

    The rows (or the columns) of A generate a box with volume I det(A) I.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password