×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Already have an account? Login here
×
Reset your password

Solutions for Chapter 6.5: Rings and Fields

A Transition to Advanced Mathematics | 7th Edition | ISBN: 9780495562023 | Authors: Douglas Smith, Maurice Eggen, Richard St. Andre

Full solutions for A Transition to Advanced Mathematics | 7th Edition

ISBN: 9780495562023

A Transition to Advanced Mathematics | 7th Edition | ISBN: 9780495562023 | Authors: Douglas Smith, Maurice Eggen, Richard St. Andre

Solutions for Chapter 6.5: Rings and Fields

Chapter 6.5: Rings and Fields includes 16 full step-by-step solutions. Since 16 problems in chapter 6.5: Rings and Fields have been answered, more than 19851 students have viewed full step-by-step solutions from this chapter. A Transition to Advanced Mathematics was written by and is associated to the ISBN: 9780495562023. This textbook survival guide was created for the textbook: A Transition to Advanced Mathematics, edition: 7. This expansive textbook survival guide covers the following chapters and their solutions.

Key Math Terms and definitions covered in this textbook
  • Commuting matrices AB = BA.

    If diagonalizable, they share n eigenvectors.

  • Conjugate Gradient Method.

    A sequence of steps (end of Chapter 9) to solve positive definite Ax = b by minimizing !x T Ax - x Tb over growing Krylov subspaces.

  • Eigenvalue A and eigenvector x.

    Ax = AX with x#-O so det(A - AI) = o.

  • Free variable Xi.

    Column i has no pivot in elimination. We can give the n - r free variables any values, then Ax = b determines the r pivot variables (if solvable!).

  • Full row rank r = m.

    Independent rows, at least one solution to Ax = b, column space is all of Rm. Full rank means full column rank or full row rank.

  • Fundamental Theorem.

    The nullspace N (A) and row space C (AT) are orthogonal complements in Rn(perpendicular from Ax = 0 with dimensions rand n - r). Applied to AT, the column space C(A) is the orthogonal complement of N(AT) in Rm.

  • Hermitian matrix A H = AT = A.

    Complex analog a j i = aU of a symmetric matrix.

  • Identity matrix I (or In).

    Diagonal entries = 1, off-diagonal entries = 0.

  • Inverse matrix A-I.

    Square matrix with A-I A = I and AA-l = I. No inverse if det A = 0 and rank(A) < n and Ax = 0 for a nonzero vector x. The inverses of AB and AT are B-1 A-I and (A-I)T. Cofactor formula (A-l)ij = Cji! detA.

  • Left inverse A+.

    If A has full column rank n, then A+ = (AT A)-I AT has A+ A = In.

  • Orthogonal subspaces.

    Every v in V is orthogonal to every w in W.

  • Rotation matrix

    R = [~ CS ] rotates the plane by () and R- 1 = RT rotates back by -(). Eigenvalues are eiO and e-iO , eigenvectors are (1, ±i). c, s = cos (), sin ().

  • Schwarz inequality

    Iv·wl < IIvll IIwll.Then IvTAwl2 < (vT Av)(wT Aw) for pos def A.

  • Simplex method for linear programming.

    The minimum cost vector x * is found by moving from comer to lower cost comer along the edges of the feasible set (where the constraints Ax = b and x > 0 are satisfied). Minimum cost at a comer!

  • Singular matrix A.

    A square matrix that has no inverse: det(A) = o.

  • Skew-symmetric matrix K.

    The transpose is -K, since Kij = -Kji. Eigenvalues are pure imaginary, eigenvectors are orthogonal, eKt is an orthogonal matrix.

  • Standard basis for Rn.

    Columns of n by n identity matrix (written i ,j ,k in R3).

  • Subspace S of V.

    Any vector space inside V, including V and Z = {zero vector only}.

  • Tridiagonal matrix T: tij = 0 if Ii - j I > 1.

    T- 1 has rank 1 above and below diagonal.

  • Volume of box.

    The rows (or the columns) of A generate a box with volume I det(A) I.