×
×

# Solutions for Chapter 17.5: CauchyRiemann Equations

## Full solutions for Advanced Engineering Mathematics | 6th Edition

ISBN: 9781284105902

Solutions for Chapter 17.5: CauchyRiemann Equations

Solutions for Chapter 17.5
4 5 0 347 Reviews
25
2
##### ISBN: 9781284105902

Since 32 problems in chapter 17.5: CauchyRiemann Equations have been answered, more than 36549 students have viewed full step-by-step solutions from this chapter. Chapter 17.5: CauchyRiemann Equations includes 32 full step-by-step solutions. This textbook survival guide was created for the textbook: Advanced Engineering Mathematics , edition: 6. This expansive textbook survival guide covers the following chapters and their solutions. Advanced Engineering Mathematics was written by and is associated to the ISBN: 9781284105902.

Key Math Terms and definitions covered in this textbook
• Affine transformation

Tv = Av + Vo = linear transformation plus shift.

• Back substitution.

Upper triangular systems are solved in reverse order Xn to Xl.

• Characteristic equation det(A - AI) = O.

The n roots are the eigenvalues of A.

• Dimension of vector space

dim(V) = number of vectors in any basis for V.

• Dot product = Inner product x T y = XI Y 1 + ... + Xn Yn.

Complex dot product is x T Y . Perpendicular vectors have x T y = O. (AB)ij = (row i of A)T(column j of B).

• Fast Fourier Transform (FFT).

A factorization of the Fourier matrix Fn into e = log2 n matrices Si times a permutation. Each Si needs only nl2 multiplications, so Fnx and Fn-1c can be computed with ne/2 multiplications. Revolutionary.

• Hankel matrix H.

Constant along each antidiagonal; hij depends on i + j.

• Inverse matrix A-I.

Square matrix with A-I A = I and AA-l = I. No inverse if det A = 0 and rank(A) < n and Ax = 0 for a nonzero vector x. The inverses of AB and AT are B-1 A-I and (A-I)T. Cofactor formula (A-l)ij = Cji! detA.

• Iterative method.

A sequence of steps intended to approach the desired solution.

• Least squares solution X.

The vector x that minimizes the error lie 112 solves AT Ax = ATb. Then e = b - Ax is orthogonal to all columns of A.

• Left nullspace N (AT).

Nullspace of AT = "left nullspace" of A because y T A = OT.

• Norm

IIA II. The ".e 2 norm" of A is the maximum ratio II Ax II/l1x II = O"max· Then II Ax II < IIAllllxll and IIABII < IIAIIIIBII and IIA + BII < IIAII + IIBII. Frobenius norm IIAII} = L La~. The.e 1 and.e oo norms are largest column and row sums of laij I.

• Normal matrix.

If N NT = NT N, then N has orthonormal (complex) eigenvectors.

• Orthogonal subspaces.

Every v in V is orthogonal to every w in W.

• Outer product uv T

= column times row = rank one matrix.

• Positive definite matrix A.

Symmetric matrix with positive eigenvalues and positive pivots. Definition: x T Ax > 0 unless x = O. Then A = LDLT with diag(D» O.

• Saddle point of I(x}, ... ,xn ).

A point where the first derivatives of I are zero and the second derivative matrix (a2 II aXi ax j = Hessian matrix) is indefinite.

• Singular Value Decomposition

(SVD) A = U:E VT = (orthogonal) ( diag)( orthogonal) First r columns of U and V are orthonormal bases of C (A) and C (AT), AVi = O'iUi with singular value O'i > O. Last columns are orthonormal bases of nullspaces.

• Toeplitz matrix.

Constant down each diagonal = time-invariant (shift-invariant) filter.

• Transpose matrix AT.

Entries AL = Ajj. AT is n by In, AT A is square, symmetric, positive semidefinite. The transposes of AB and A-I are BT AT and (AT)-I.

×