×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 2-5: Solving Equations with the Variable on Each Side

Algebra 1, Student Edition (MERRILL ALGEBRA 1) | 1st Edition | ISBN: 9780078738227 | Authors: Berchie Holliday, Gilbert J. Cuevas, Beatrice Luchin, Ruth M. Casey, Linda M. Hayek, John A. Carter, Daniel Marks, Roger Day, & 2 more

Full solutions for Algebra 1, Student Edition (MERRILL ALGEBRA 1) | 1st Edition

ISBN: 9780078738227

Algebra 1, Student Edition (MERRILL ALGEBRA 1) | 1st Edition | ISBN: 9780078738227 | Authors: Berchie Holliday, Gilbert J. Cuevas, Beatrice Luchin, Ruth M. Casey, Linda M. Hayek, John A. Carter, Daniel Marks, Roger Day, & 2 more

Solutions for Chapter 2-5: Solving Equations with the Variable on Each Side

Solutions for Chapter 2-5
4 5 0 426 Reviews
26
5
Textbook: Algebra 1, Student Edition (MERRILL ALGEBRA 1)
Edition: 1
Author: Berchie Holliday, Gilbert J. Cuevas, Beatrice Luchin, Ruth M. Casey, Linda M. Hayek, John A. Carter, Daniel Marks, Roger Day, & 2 more
ISBN: 9780078738227

Chapter 2-5: Solving Equations with the Variable on Each Side includes 66 full step-by-step solutions. Algebra 1, Student Edition (MERRILL ALGEBRA 1) was written by and is associated to the ISBN: 9780078738227. This expansive textbook survival guide covers the following chapters and their solutions. Since 66 problems in chapter 2-5: Solving Equations with the Variable on Each Side have been answered, more than 34043 students have viewed full step-by-step solutions from this chapter. This textbook survival guide was created for the textbook: Algebra 1, Student Edition (MERRILL ALGEBRA 1) , edition: 1.

Key Math Terms and definitions covered in this textbook
  • Associative Law (AB)C = A(BC).

    Parentheses can be removed to leave ABC.

  • Block matrix.

    A matrix can be partitioned into matrix blocks, by cuts between rows and/or between columns. Block multiplication ofAB is allowed if the block shapes permit.

  • Cofactor Cij.

    Remove row i and column j; multiply the determinant by (-I)i + j •

  • Complete solution x = x p + Xn to Ax = b.

    (Particular x p) + (x n in nullspace).

  • Covariance matrix:E.

    When random variables Xi have mean = average value = 0, their covariances "'£ ij are the averages of XiX j. With means Xi, the matrix :E = mean of (x - x) (x - x) T is positive (semi)definite; :E is diagonal if the Xi are independent.

  • Cyclic shift

    S. Permutation with S21 = 1, S32 = 1, ... , finally SIn = 1. Its eigenvalues are the nth roots e2lrik/n of 1; eigenvectors are columns of the Fourier matrix F.

  • Eigenvalue A and eigenvector x.

    Ax = AX with x#-O so det(A - AI) = o.

  • Factorization

    A = L U. If elimination takes A to U without row exchanges, then the lower triangular L with multipliers eij (and eii = 1) brings U back to A.

  • Gauss-Jordan method.

    Invert A by row operations on [A I] to reach [I A-I].

  • Graph G.

    Set of n nodes connected pairwise by m edges. A complete graph has all n(n - 1)/2 edges between nodes. A tree has only n - 1 edges and no closed loops.

  • Jordan form 1 = M- 1 AM.

    If A has s independent eigenvectors, its "generalized" eigenvector matrix M gives 1 = diag(lt, ... , 1s). The block his Akh +Nk where Nk has 1 's on diagonall. Each block has one eigenvalue Ak and one eigenvector.

  • Krylov subspace Kj(A, b).

    The subspace spanned by b, Ab, ... , Aj-Ib. Numerical methods approximate A -I b by x j with residual b - Ax j in this subspace. A good basis for K j requires only multiplication by A at each step.

  • Minimal polynomial of A.

    The lowest degree polynomial with meA) = zero matrix. This is peA) = det(A - AI) if no eigenvalues are repeated; always meA) divides peA).

  • Normal matrix.

    If N NT = NT N, then N has orthonormal (complex) eigenvectors.

  • Nullspace matrix N.

    The columns of N are the n - r special solutions to As = O.

  • Orthonormal vectors q 1 , ... , q n·

    Dot products are q T q j = 0 if i =1= j and q T q i = 1. The matrix Q with these orthonormal columns has Q T Q = I. If m = n then Q T = Q -1 and q 1 ' ... , q n is an orthonormal basis for Rn : every v = L (v T q j )q j •

  • Reflection matrix (Householder) Q = I -2uuT.

    Unit vector u is reflected to Qu = -u. All x intheplanemirroruTx = o have Qx = x. Notice QT = Q-1 = Q.

  • Schur complement S, D - C A -} B.

    Appears in block elimination on [~ g ].

  • Symmetric matrix A.

    The transpose is AT = A, and aU = a ji. A-I is also symmetric.

  • Triangle inequality II u + v II < II u II + II v II.

    For matrix norms II A + B II < II A II + II B II·

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password