×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 10-5: INVERSE TRIGONOMETRIC FUNCTIONS

Amsco's Algebra 2 and Trigonometry | 1st Edition | ISBN: 9781567657029 | Authors: Gantert

Full solutions for Amsco's Algebra 2 and Trigonometry | 1st Edition

ISBN: 9781567657029

Amsco's Algebra 2 and Trigonometry | 1st Edition | ISBN: 9781567657029 | Authors: Gantert

Solutions for Chapter 10-5: INVERSE TRIGONOMETRIC FUNCTIONS

Solutions for Chapter 10-5
4 5 0 429 Reviews
14
3
Textbook: Amsco's Algebra 2 and Trigonometry
Edition: 1
Author: Gantert
ISBN: 9781567657029

Amsco's Algebra 2 and Trigonometry was written by and is associated to the ISBN: 9781567657029. This expansive textbook survival guide covers the following chapters and their solutions. Since 43 problems in chapter 10-5: INVERSE TRIGONOMETRIC FUNCTIONS have been answered, more than 29374 students have viewed full step-by-step solutions from this chapter. Chapter 10-5: INVERSE TRIGONOMETRIC FUNCTIONS includes 43 full step-by-step solutions. This textbook survival guide was created for the textbook: Amsco's Algebra 2 and Trigonometry, edition: 1.

Key Math Terms and definitions covered in this textbook
  • Affine transformation

    Tv = Av + Vo = linear transformation plus shift.

  • Back substitution.

    Upper triangular systems are solved in reverse order Xn to Xl.

  • Cholesky factorization

    A = CTC = (L.J]))(L.J]))T for positive definite A.

  • Conjugate Gradient Method.

    A sequence of steps (end of Chapter 9) to solve positive definite Ax = b by minimizing !x T Ax - x Tb over growing Krylov subspaces.

  • Eigenvalue A and eigenvector x.

    Ax = AX with x#-O so det(A - AI) = o.

  • Factorization

    A = L U. If elimination takes A to U without row exchanges, then the lower triangular L with multipliers eij (and eii = 1) brings U back to A.

  • Hilbert matrix hilb(n).

    Entries HU = 1/(i + j -1) = Jd X i- 1 xj-1dx. Positive definite but extremely small Amin and large condition number: H is ill-conditioned.

  • Jordan form 1 = M- 1 AM.

    If A has s independent eigenvectors, its "generalized" eigenvector matrix M gives 1 = diag(lt, ... , 1s). The block his Akh +Nk where Nk has 1 's on diagonall. Each block has one eigenvalue Ak and one eigenvector.

  • Left nullspace N (AT).

    Nullspace of AT = "left nullspace" of A because y T A = OT.

  • Network.

    A directed graph that has constants Cl, ... , Cm associated with the edges.

  • Norm

    IIA II. The ".e 2 norm" of A is the maximum ratio II Ax II/l1x II = O"max· Then II Ax II < IIAllllxll and IIABII < IIAIIIIBII and IIA + BII < IIAII + IIBII. Frobenius norm IIAII} = L La~. The.e 1 and.e oo norms are largest column and row sums of laij I.

  • Nullspace matrix N.

    The columns of N are the n - r special solutions to As = O.

  • Orthogonal subspaces.

    Every v in V is orthogonal to every w in W.

  • Saddle point of I(x}, ... ,xn ).

    A point where the first derivatives of I are zero and the second derivative matrix (a2 II aXi ax j = Hessian matrix) is indefinite.

  • Schwarz inequality

    Iv·wl < IIvll IIwll.Then IvTAwl2 < (vT Av)(wT Aw) for pos def A.

  • Singular matrix A.

    A square matrix that has no inverse: det(A) = o.

  • Singular Value Decomposition

    (SVD) A = U:E VT = (orthogonal) ( diag)( orthogonal) First r columns of U and V are orthonormal bases of C (A) and C (AT), AVi = O'iUi with singular value O'i > O. Last columns are orthonormal bases of nullspaces.

  • Special solutions to As = O.

    One free variable is Si = 1, other free variables = o.

  • Subspace S of V.

    Any vector space inside V, including V and Z = {zero vector only}.

  • Vector addition.

    v + w = (VI + WI, ... , Vn + Wn ) = diagonal of parallelogram.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password