×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 11-8: SKETCHING TRIGONOMETRIC GRAPHS

Amsco's Algebra 2 and Trigonometry | 1st Edition | ISBN: 9781567657029 | Authors: Gantert

Full solutions for Amsco's Algebra 2 and Trigonometry | 1st Edition

ISBN: 9781567657029

Amsco's Algebra 2 and Trigonometry | 1st Edition | ISBN: 9781567657029 | Authors: Gantert

Solutions for Chapter 11-8: SKETCHING TRIGONOMETRIC GRAPHS

Solutions for Chapter 11-8
4 5 0 242 Reviews
20
0
Textbook: Amsco's Algebra 2 and Trigonometry
Edition: 1
Author: Gantert
ISBN: 9781567657029

Chapter 11-8: SKETCHING TRIGONOMETRIC GRAPHS includes 23 full step-by-step solutions. This textbook survival guide was created for the textbook: Amsco's Algebra 2 and Trigonometry, edition: 1. Since 23 problems in chapter 11-8: SKETCHING TRIGONOMETRIC GRAPHS have been answered, more than 29483 students have viewed full step-by-step solutions from this chapter. Amsco's Algebra 2 and Trigonometry was written by and is associated to the ISBN: 9781567657029. This expansive textbook survival guide covers the following chapters and their solutions.

Key Math Terms and definitions covered in this textbook
  • Affine transformation

    Tv = Av + Vo = linear transformation plus shift.

  • Associative Law (AB)C = A(BC).

    Parentheses can be removed to leave ABC.

  • Block matrix.

    A matrix can be partitioned into matrix blocks, by cuts between rows and/or between columns. Block multiplication ofAB is allowed if the block shapes permit.

  • Cholesky factorization

    A = CTC = (L.J]))(L.J]))T for positive definite A.

  • Circulant matrix C.

    Constant diagonals wrap around as in cyclic shift S. Every circulant is Col + CIS + ... + Cn_lSn - l . Cx = convolution c * x. Eigenvectors in F.

  • Column picture of Ax = b.

    The vector b becomes a combination of the columns of A. The system is solvable only when b is in the column space C (A).

  • Elimination matrix = Elementary matrix Eij.

    The identity matrix with an extra -eij in the i, j entry (i #- j). Then Eij A subtracts eij times row j of A from row i.

  • Fourier matrix F.

    Entries Fjk = e21Cijk/n give orthogonal columns FT F = nI. Then y = Fe is the (inverse) Discrete Fourier Transform Y j = L cke21Cijk/n.

  • Free variable Xi.

    Column i has no pivot in elimination. We can give the n - r free variables any values, then Ax = b determines the r pivot variables (if solvable!).

  • Iterative method.

    A sequence of steps intended to approach the desired solution.

  • Multiplicities AM and G M.

    The algebraic multiplicity A M of A is the number of times A appears as a root of det(A - AI) = O. The geometric multiplicity GM is the number of independent eigenvectors for A (= dimension of the eigenspace).

  • Nilpotent matrix N.

    Some power of N is the zero matrix, N k = o. The only eigenvalue is A = 0 (repeated n times). Examples: triangular matrices with zero diagonal.

  • Nullspace matrix N.

    The columns of N are the n - r special solutions to As = O.

  • Nullspace N (A)

    = All solutions to Ax = O. Dimension n - r = (# columns) - rank.

  • Orthogonal subspaces.

    Every v in V is orthogonal to every w in W.

  • Orthonormal vectors q 1 , ... , q n·

    Dot products are q T q j = 0 if i =1= j and q T q i = 1. The matrix Q with these orthonormal columns has Q T Q = I. If m = n then Q T = Q -1 and q 1 ' ... , q n is an orthonormal basis for Rn : every v = L (v T q j )q j •

  • Projection matrix P onto subspace S.

    Projection p = P b is the closest point to b in S, error e = b - Pb is perpendicularto S. p 2 = P = pT, eigenvalues are 1 or 0, eigenvectors are in S or S...L. If columns of A = basis for S then P = A (AT A) -1 AT.

  • Saddle point of I(x}, ... ,xn ).

    A point where the first derivatives of I are zero and the second derivative matrix (a2 II aXi ax j = Hessian matrix) is indefinite.

  • Schur complement S, D - C A -} B.

    Appears in block elimination on [~ g ].

  • Subspace S of V.

    Any vector space inside V, including V and Z = {zero vector only}.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password