×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 15-8: CORRELATION COEFFICIENT

Amsco's Algebra 2 and Trigonometry | 1st Edition | ISBN: 9781567657029 | Authors: Gantert

Full solutions for Amsco's Algebra 2 and Trigonometry | 1st Edition

ISBN: 9781567657029

Amsco's Algebra 2 and Trigonometry | 1st Edition | ISBN: 9781567657029 | Authors: Gantert

Solutions for Chapter 15-8: CORRELATION COEFFICIENT

Solutions for Chapter 15-8
4 5 0 239 Reviews
28
4
Textbook: Amsco's Algebra 2 and Trigonometry
Edition: 1
Author: Gantert
ISBN: 9781567657029

This expansive textbook survival guide covers the following chapters and their solutions. Amsco's Algebra 2 and Trigonometry was written by and is associated to the ISBN: 9781567657029. This textbook survival guide was created for the textbook: Amsco's Algebra 2 and Trigonometry, edition: 1. Since 20 problems in chapter 15-8: CORRELATION COEFFICIENT have been answered, more than 30988 students have viewed full step-by-step solutions from this chapter. Chapter 15-8: CORRELATION COEFFICIENT includes 20 full step-by-step solutions.

Key Math Terms and definitions covered in this textbook
  • Adjacency matrix of a graph.

    Square matrix with aij = 1 when there is an edge from node i to node j; otherwise aij = O. A = AT when edges go both ways (undirected). Adjacency matrix of a graph. Square matrix with aij = 1 when there is an edge from node i to node j; otherwise aij = O. A = AT when edges go both ways (undirected).

  • Affine transformation

    Tv = Av + Vo = linear transformation plus shift.

  • Big formula for n by n determinants.

    Det(A) is a sum of n! terms. For each term: Multiply one entry from each row and column of A: rows in order 1, ... , nand column order given by a permutation P. Each of the n! P 's has a + or - sign.

  • Column picture of Ax = b.

    The vector b becomes a combination of the columns of A. The system is solvable only when b is in the column space C (A).

  • Cyclic shift

    S. Permutation with S21 = 1, S32 = 1, ... , finally SIn = 1. Its eigenvalues are the nth roots e2lrik/n of 1; eigenvectors are columns of the Fourier matrix F.

  • Elimination.

    A sequence of row operations that reduces A to an upper triangular U or to the reduced form R = rref(A). Then A = LU with multipliers eO in L, or P A = L U with row exchanges in P, or E A = R with an invertible E.

  • Exponential eAt = I + At + (At)2 12! + ...

    has derivative AeAt; eAt u(O) solves u' = Au.

  • Gauss-Jordan method.

    Invert A by row operations on [A I] to reach [I A-I].

  • Hilbert matrix hilb(n).

    Entries HU = 1/(i + j -1) = Jd X i- 1 xj-1dx. Positive definite but extremely small Amin and large condition number: H is ill-conditioned.

  • Incidence matrix of a directed graph.

    The m by n edge-node incidence matrix has a row for each edge (node i to node j), with entries -1 and 1 in columns i and j .

  • Matrix multiplication AB.

    The i, j entry of AB is (row i of A)·(column j of B) = L aikbkj. By columns: Column j of AB = A times column j of B. By rows: row i of A multiplies B. Columns times rows: AB = sum of (column k)(row k). All these equivalent definitions come from the rule that A B times x equals A times B x .

  • Normal matrix.

    If N NT = NT N, then N has orthonormal (complex) eigenvectors.

  • Polar decomposition A = Q H.

    Orthogonal Q times positive (semi)definite H.

  • Projection p = a(aTblaTa) onto the line through a.

    P = aaT laTa has rank l.

  • Right inverse A+.

    If A has full row rank m, then A+ = AT(AAT)-l has AA+ = 1m.

  • Simplex method for linear programming.

    The minimum cost vector x * is found by moving from comer to lower cost comer along the edges of the feasible set (where the constraints Ax = b and x > 0 are satisfied). Minimum cost at a comer!

  • Special solutions to As = O.

    One free variable is Si = 1, other free variables = o.

  • Subspace S of V.

    Any vector space inside V, including V and Z = {zero vector only}.

  • Transpose matrix AT.

    Entries AL = Ajj. AT is n by In, AT A is square, symmetric, positive semidefinite. The transposes of AB and A-I are BT AT and (AT)-I.

  • Triangle inequality II u + v II < II u II + II v II.

    For matrix norms II A + B II < II A II + II B II·

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password