×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 5.1: Areas, Distances, and Pathogenesis

Biocalculus: Calculus for Life Sciences | 1st Edition | ISBN: 9781133109631 | Authors: James Stewart, Troy Day

Full solutions for Biocalculus: Calculus for Life Sciences | 1st Edition

ISBN: 9781133109631

Biocalculus: Calculus for Life Sciences | 1st Edition | ISBN: 9781133109631 | Authors: James Stewart, Troy Day

Solutions for Chapter 5.1: Areas, Distances, and Pathogenesis

Solutions for Chapter 5.1
4 5 0 271 Reviews
18
3
Textbook: Biocalculus: Calculus for Life Sciences
Edition: 1
Author: James Stewart, Troy Day
ISBN: 9781133109631

Biocalculus: Calculus for Life Sciences was written by and is associated to the ISBN: 9781133109631. This expansive textbook survival guide covers the following chapters and their solutions. This textbook survival guide was created for the textbook: Biocalculus: Calculus for Life Sciences , edition: 1. Since 24 problems in chapter 5.1: Areas, Distances, and Pathogenesis have been answered, more than 25228 students have viewed full step-by-step solutions from this chapter. Chapter 5.1: Areas, Distances, and Pathogenesis includes 24 full step-by-step solutions.

Key Math Terms and definitions covered in this textbook
  • Cramer's Rule for Ax = b.

    B j has b replacing column j of A; x j = det B j I det A

  • Echelon matrix U.

    The first nonzero entry (the pivot) in each row comes in a later column than the pivot in the previous row. All zero rows come last.

  • Eigenvalue A and eigenvector x.

    Ax = AX with x#-O so det(A - AI) = o.

  • Fourier matrix F.

    Entries Fjk = e21Cijk/n give orthogonal columns FT F = nI. Then y = Fe is the (inverse) Discrete Fourier Transform Y j = L cke21Cijk/n.

  • Free columns of A.

    Columns without pivots; these are combinations of earlier columns.

  • Hessenberg matrix H.

    Triangular matrix with one extra nonzero adjacent diagonal.

  • Identity matrix I (or In).

    Diagonal entries = 1, off-diagonal entries = 0.

  • Indefinite matrix.

    A symmetric matrix with eigenvalues of both signs (+ and - ).

  • Independent vectors VI, .. " vk.

    No combination cl VI + ... + qVk = zero vector unless all ci = O. If the v's are the columns of A, the only solution to Ax = 0 is x = o.

  • Length II x II.

    Square root of x T x (Pythagoras in n dimensions).

  • Linear combination cv + d w or L C jV j.

    Vector addition and scalar multiplication.

  • Markov matrix M.

    All mij > 0 and each column sum is 1. Largest eigenvalue A = 1. If mij > 0, the columns of Mk approach the steady state eigenvector M s = s > O.

  • Minimal polynomial of A.

    The lowest degree polynomial with meA) = zero matrix. This is peA) = det(A - AI) if no eigenvalues are repeated; always meA) divides peA).

  • Multiplication Ax

    = Xl (column 1) + ... + xn(column n) = combination of columns.

  • Nilpotent matrix N.

    Some power of N is the zero matrix, N k = o. The only eigenvalue is A = 0 (repeated n times). Examples: triangular matrices with zero diagonal.

  • Orthonormal vectors q 1 , ... , q n·

    Dot products are q T q j = 0 if i =1= j and q T q i = 1. The matrix Q with these orthonormal columns has Q T Q = I. If m = n then Q T = Q -1 and q 1 ' ... , q n is an orthonormal basis for Rn : every v = L (v T q j )q j •

  • Pivot columns of A.

    Columns that contain pivots after row reduction. These are not combinations of earlier columns. The pivot columns are a basis for the column space.

  • Schur complement S, D - C A -} B.

    Appears in block elimination on [~ g ].

  • Simplex method for linear programming.

    The minimum cost vector x * is found by moving from comer to lower cost comer along the edges of the feasible set (where the constraints Ax = b and x > 0 are satisfied). Minimum cost at a comer!

  • Standard basis for Rn.

    Columns of n by n identity matrix (written i ,j ,k in R3).

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password