×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 6.4: Volumes

Biocalculus: Calculus for Life Sciences | 1st Edition | ISBN: 9781133109631 | Authors: James Stewart, Troy Day

Full solutions for Biocalculus: Calculus for Life Sciences | 1st Edition

ISBN: 9781133109631

Biocalculus: Calculus for Life Sciences | 1st Edition | ISBN: 9781133109631 | Authors: James Stewart, Troy Day

Solutions for Chapter 6.4: Volumes

Solutions for Chapter 6.4
4 5 0 415 Reviews
13
1
Textbook: Biocalculus: Calculus for Life Sciences
Edition: 1
Author: James Stewart, Troy Day
ISBN: 9781133109631

Chapter 6.4: Volumes includes 18 full step-by-step solutions. This textbook survival guide was created for the textbook: Biocalculus: Calculus for Life Sciences , edition: 1. This expansive textbook survival guide covers the following chapters and their solutions. Biocalculus: Calculus for Life Sciences was written by and is associated to the ISBN: 9781133109631. Since 18 problems in chapter 6.4: Volumes have been answered, more than 27416 students have viewed full step-by-step solutions from this chapter.

Key Math Terms and definitions covered in this textbook
  • Associative Law (AB)C = A(BC).

    Parentheses can be removed to leave ABC.

  • Augmented matrix [A b].

    Ax = b is solvable when b is in the column space of A; then [A b] has the same rank as A. Elimination on [A b] keeps equations correct.

  • Back substitution.

    Upper triangular systems are solved in reverse order Xn to Xl.

  • Cofactor Cij.

    Remove row i and column j; multiply the determinant by (-I)i + j •

  • Cross product u xv in R3:

    Vector perpendicular to u and v, length Ilullllvlll sin el = area of parallelogram, u x v = "determinant" of [i j k; UI U2 U3; VI V2 V3].

  • Four Fundamental Subspaces C (A), N (A), C (AT), N (AT).

    Use AT for complex A.

  • Hermitian matrix A H = AT = A.

    Complex analog a j i = aU of a symmetric matrix.

  • Incidence matrix of a directed graph.

    The m by n edge-node incidence matrix has a row for each edge (node i to node j), with entries -1 and 1 in columns i and j .

  • Iterative method.

    A sequence of steps intended to approach the desired solution.

  • Krylov subspace Kj(A, b).

    The subspace spanned by b, Ab, ... , Aj-Ib. Numerical methods approximate A -I b by x j with residual b - Ax j in this subspace. A good basis for K j requires only multiplication by A at each step.

  • Left inverse A+.

    If A has full column rank n, then A+ = (AT A)-I AT has A+ A = In.

  • Linear transformation T.

    Each vector V in the input space transforms to T (v) in the output space, and linearity requires T(cv + dw) = c T(v) + d T(w). Examples: Matrix multiplication A v, differentiation and integration in function space.

  • Network.

    A directed graph that has constants Cl, ... , Cm associated with the edges.

  • Pascal matrix

    Ps = pascal(n) = the symmetric matrix with binomial entries (i1~;2). Ps = PL Pu all contain Pascal's triangle with det = 1 (see Pascal in the index).

  • Rank r (A)

    = number of pivots = dimension of column space = dimension of row space.

  • Rayleigh quotient q (x) = X T Ax I x T x for symmetric A: Amin < q (x) < Amax.

    Those extremes are reached at the eigenvectors x for Amin(A) and Amax(A).

  • Row picture of Ax = b.

    Each equation gives a plane in Rn; the planes intersect at x.

  • Semidefinite matrix A.

    (Positive) semidefinite: all x T Ax > 0, all A > 0; A = any RT R.

  • Symmetric factorizations A = LDLT and A = QAQT.

    Signs in A = signs in D.

  • Vector v in Rn.

    Sequence of n real numbers v = (VI, ... , Vn) = point in Rn.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password