×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 6: Applications of Integrals

Biocalculus: Calculus for Life Sciences | 1st Edition | ISBN: 9781133109631 | Authors: James Stewart, Troy Day

Full solutions for Biocalculus: Calculus for Life Sciences | 1st Edition

ISBN: 9781133109631

Biocalculus: Calculus for Life Sciences | 1st Edition | ISBN: 9781133109631 | Authors: James Stewart, Troy Day

Solutions for Chapter 6: Applications of Integrals

Solutions for Chapter 6
4 5 0 413 Reviews
14
1
Textbook: Biocalculus: Calculus for Life Sciences
Edition: 1
Author: James Stewart, Troy Day
ISBN: 9781133109631

This expansive textbook survival guide covers the following chapters and their solutions. Chapter 6: Applications of Integrals includes 20 full step-by-step solutions. Biocalculus: Calculus for Life Sciences was written by and is associated to the ISBN: 9781133109631. Since 20 problems in chapter 6: Applications of Integrals have been answered, more than 26285 students have viewed full step-by-step solutions from this chapter. This textbook survival guide was created for the textbook: Biocalculus: Calculus for Life Sciences , edition: 1.

Key Math Terms and definitions covered in this textbook
  • Block matrix.

    A matrix can be partitioned into matrix blocks, by cuts between rows and/or between columns. Block multiplication ofAB is allowed if the block shapes permit.

  • Complete solution x = x p + Xn to Ax = b.

    (Particular x p) + (x n in nullspace).

  • Covariance matrix:E.

    When random variables Xi have mean = average value = 0, their covariances "'£ ij are the averages of XiX j. With means Xi, the matrix :E = mean of (x - x) (x - x) T is positive (semi)definite; :E is diagonal if the Xi are independent.

  • Full row rank r = m.

    Independent rows, at least one solution to Ax = b, column space is all of Rm. Full rank means full column rank or full row rank.

  • Hankel matrix H.

    Constant along each antidiagonal; hij depends on i + j.

  • Hessenberg matrix H.

    Triangular matrix with one extra nonzero adjacent diagonal.

  • Krylov subspace Kj(A, b).

    The subspace spanned by b, Ab, ... , Aj-Ib. Numerical methods approximate A -I b by x j with residual b - Ax j in this subspace. A good basis for K j requires only multiplication by A at each step.

  • Multiplicities AM and G M.

    The algebraic multiplicity A M of A is the number of times A appears as a root of det(A - AI) = O. The geometric multiplicity GM is the number of independent eigenvectors for A (= dimension of the eigenspace).

  • Normal matrix.

    If N NT = NT N, then N has orthonormal (complex) eigenvectors.

  • Nullspace N (A)

    = All solutions to Ax = O. Dimension n - r = (# columns) - rank.

  • Partial pivoting.

    In each column, choose the largest available pivot to control roundoff; all multipliers have leij I < 1. See condition number.

  • Random matrix rand(n) or randn(n).

    MATLAB creates a matrix with random entries, uniformly distributed on [0 1] for rand and standard normal distribution for randn.

  • Row picture of Ax = b.

    Each equation gives a plane in Rn; the planes intersect at x.

  • Similar matrices A and B.

    Every B = M-I AM has the same eigenvalues as A.

  • Simplex method for linear programming.

    The minimum cost vector x * is found by moving from comer to lower cost comer along the edges of the feasible set (where the constraints Ax = b and x > 0 are satisfied). Minimum cost at a comer!

  • Singular matrix A.

    A square matrix that has no inverse: det(A) = o.

  • Spectrum of A = the set of eigenvalues {A I, ... , An}.

    Spectral radius = max of IAi I.

  • Transpose matrix AT.

    Entries AL = Ajj. AT is n by In, AT A is square, symmetric, positive semidefinite. The transposes of AB and A-I are BT AT and (AT)-I.

  • Volume of box.

    The rows (or the columns) of A generate a box with volume I det(A) I.

  • Wavelets Wjk(t).

    Stretch and shift the time axis to create Wjk(t) = woo(2j t - k).

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password