×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 1.5: Quadratic Equations

College Algebra | 6th Edition | ISBN: 9780321782281 | Authors: Robert F. Blitzer

Full solutions for College Algebra | 6th Edition

ISBN: 9780321782281

College Algebra | 6th Edition | ISBN: 9780321782281 | Authors: Robert F. Blitzer

Solutions for Chapter 1.5: Quadratic Equations

Solutions for Chapter 1.5
4 5 0 284 Reviews
13
4
Textbook: College Algebra
Edition: 6
Author: Robert F. Blitzer
ISBN: 9780321782281

Chapter 1.5: Quadratic Equations includes 179 full step-by-step solutions. This expansive textbook survival guide covers the following chapters and their solutions. Since 179 problems in chapter 1.5: Quadratic Equations have been answered, more than 39472 students have viewed full step-by-step solutions from this chapter. This textbook survival guide was created for the textbook: College Algebra , edition: 6. College Algebra was written by and is associated to the ISBN: 9780321782281.

Key Math Terms and definitions covered in this textbook
  • Characteristic equation det(A - AI) = O.

    The n roots are the eigenvalues of A.

  • Cofactor Cij.

    Remove row i and column j; multiply the determinant by (-I)i + j •

  • Conjugate Gradient Method.

    A sequence of steps (end of Chapter 9) to solve positive definite Ax = b by minimizing !x T Ax - x Tb over growing Krylov subspaces.

  • Determinant IAI = det(A).

    Defined by det I = 1, sign reversal for row exchange, and linearity in each row. Then IAI = 0 when A is singular. Also IABI = IAIIBI and

  • Dimension of vector space

    dim(V) = number of vectors in any basis for V.

  • Elimination.

    A sequence of row operations that reduces A to an upper triangular U or to the reduced form R = rref(A). Then A = LU with multipliers eO in L, or P A = L U with row exchanges in P, or E A = R with an invertible E.

  • Fibonacci numbers

    0,1,1,2,3,5, ... satisfy Fn = Fn-l + Fn- 2 = (A7 -A~)I()q -A2). Growth rate Al = (1 + .J5) 12 is the largest eigenvalue of the Fibonacci matrix [ } A].

  • Fourier matrix F.

    Entries Fjk = e21Cijk/n give orthogonal columns FT F = nI. Then y = Fe is the (inverse) Discrete Fourier Transform Y j = L cke21Cijk/n.

  • Fundamental Theorem.

    The nullspace N (A) and row space C (AT) are orthogonal complements in Rn(perpendicular from Ax = 0 with dimensions rand n - r). Applied to AT, the column space C(A) is the orthogonal complement of N(AT) in Rm.

  • Hermitian matrix A H = AT = A.

    Complex analog a j i = aU of a symmetric matrix.

  • Markov matrix M.

    All mij > 0 and each column sum is 1. Largest eigenvalue A = 1. If mij > 0, the columns of Mk approach the steady state eigenvector M s = s > O.

  • Nilpotent matrix N.

    Some power of N is the zero matrix, N k = o. The only eigenvalue is A = 0 (repeated n times). Examples: triangular matrices with zero diagonal.

  • Normal matrix.

    If N NT = NT N, then N has orthonormal (complex) eigenvectors.

  • Nullspace N (A)

    = All solutions to Ax = O. Dimension n - r = (# columns) - rank.

  • Orthogonal matrix Q.

    Square matrix with orthonormal columns, so QT = Q-l. Preserves length and angles, IIQxll = IIxll and (QX)T(Qy) = xTy. AlllAI = 1, with orthogonal eigenvectors. Examples: Rotation, reflection, permutation.

  • Projection matrix P onto subspace S.

    Projection p = P b is the closest point to b in S, error e = b - Pb is perpendicularto S. p 2 = P = pT, eigenvalues are 1 or 0, eigenvectors are in S or S...L. If columns of A = basis for S then P = A (AT A) -1 AT.

  • Rank one matrix A = uvT f=. O.

    Column and row spaces = lines cu and cv.

  • Similar matrices A and B.

    Every B = M-I AM has the same eigenvalues as A.

  • Special solutions to As = O.

    One free variable is Si = 1, other free variables = o.

  • Unitary matrix UH = U T = U-I.

    Orthonormal columns (complex analog of Q).

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password