×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 3.1: Solving Systems of Equations by Graphing

California Algebra 2: Concepts, Skills, and Problem Solving | 1st Edition | ISBN: 9780078778568 | Authors: Berchie Holliday

Full solutions for California Algebra 2: Concepts, Skills, and Problem Solving | 1st Edition

ISBN: 9780078778568

California Algebra 2: Concepts, Skills, and Problem Solving | 1st Edition | ISBN: 9780078778568 | Authors: Berchie Holliday

Solutions for Chapter 3.1: Solving Systems of Equations by Graphing

Solutions for Chapter 3.1
4 5 0 411 Reviews
27
4
Textbook: California Algebra 2: Concepts, Skills, and Problem Solving
Edition: 1
Author: Berchie Holliday
ISBN: 9780078778568

Chapter 3.1: Solving Systems of Equations by Graphing includes 57 full step-by-step solutions. This textbook survival guide was created for the textbook: California Algebra 2: Concepts, Skills, and Problem Solving, edition: 1. California Algebra 2: Concepts, Skills, and Problem Solving was written by and is associated to the ISBN: 9780078778568. This expansive textbook survival guide covers the following chapters and their solutions. Since 57 problems in chapter 3.1: Solving Systems of Equations by Graphing have been answered, more than 44113 students have viewed full step-by-step solutions from this chapter.

Key Math Terms and definitions covered in this textbook
  • Adjacency matrix of a graph.

    Square matrix with aij = 1 when there is an edge from node i to node j; otherwise aij = O. A = AT when edges go both ways (undirected). Adjacency matrix of a graph. Square matrix with aij = 1 when there is an edge from node i to node j; otherwise aij = O. A = AT when edges go both ways (undirected).

  • Basis for V.

    Independent vectors VI, ... , v d whose linear combinations give each vector in V as v = CIVI + ... + CdVd. V has many bases, each basis gives unique c's. A vector space has many bases!

  • Big formula for n by n determinants.

    Det(A) is a sum of n! terms. For each term: Multiply one entry from each row and column of A: rows in order 1, ... , nand column order given by a permutation P. Each of the n! P 's has a + or - sign.

  • Characteristic equation det(A - AI) = O.

    The n roots are the eigenvalues of A.

  • Cyclic shift

    S. Permutation with S21 = 1, S32 = 1, ... , finally SIn = 1. Its eigenvalues are the nth roots e2lrik/n of 1; eigenvectors are columns of the Fourier matrix F.

  • Determinant IAI = det(A).

    Defined by det I = 1, sign reversal for row exchange, and linearity in each row. Then IAI = 0 when A is singular. Also IABI = IAIIBI and

  • Distributive Law

    A(B + C) = AB + AC. Add then multiply, or mUltiply then add.

  • Eigenvalue A and eigenvector x.

    Ax = AX with x#-O so det(A - AI) = o.

  • Fast Fourier Transform (FFT).

    A factorization of the Fourier matrix Fn into e = log2 n matrices Si times a permutation. Each Si needs only nl2 multiplications, so Fnx and Fn-1c can be computed with ne/2 multiplications. Revolutionary.

  • Fourier matrix F.

    Entries Fjk = e21Cijk/n give orthogonal columns FT F = nI. Then y = Fe is the (inverse) Discrete Fourier Transform Y j = L cke21Cijk/n.

  • Indefinite matrix.

    A symmetric matrix with eigenvalues of both signs (+ and - ).

  • Jordan form 1 = M- 1 AM.

    If A has s independent eigenvectors, its "generalized" eigenvector matrix M gives 1 = diag(lt, ... , 1s). The block his Akh +Nk where Nk has 1 's on diagonall. Each block has one eigenvalue Ak and one eigenvector.

  • Nilpotent matrix N.

    Some power of N is the zero matrix, N k = o. The only eigenvalue is A = 0 (repeated n times). Examples: triangular matrices with zero diagonal.

  • Normal equation AT Ax = ATb.

    Gives the least squares solution to Ax = b if A has full rank n (independent columns). The equation says that (columns of A)·(b - Ax) = o.

  • Outer product uv T

    = column times row = rank one matrix.

  • Projection p = a(aTblaTa) onto the line through a.

    P = aaT laTa has rank l.

  • Pseudoinverse A+ (Moore-Penrose inverse).

    The n by m matrix that "inverts" A from column space back to row space, with N(A+) = N(AT). A+ A and AA+ are the projection matrices onto the row space and column space. Rank(A +) = rank(A).

  • Spectral Theorem A = QAQT.

    Real symmetric A has real A'S and orthonormal q's.

  • Triangle inequality II u + v II < II u II + II v II.

    For matrix norms II A + B II < II A II + II B II·

  • Vector addition.

    v + w = (VI + WI, ... , Vn + Wn ) = diagonal of parallelogram.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password