×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 9.1: Exponential Functions

California Algebra 2: Concepts, Skills, and Problem Solving | 1st Edition | ISBN: 9780078778568 | Authors: Berchie Holliday

Full solutions for California Algebra 2: Concepts, Skills, and Problem Solving | 1st Edition

ISBN: 9780078778568

California Algebra 2: Concepts, Skills, and Problem Solving | 1st Edition | ISBN: 9780078778568 | Authors: Berchie Holliday

Solutions for Chapter 9.1: Exponential Functions

Solutions for Chapter 9.1
4 5 0 278 Reviews
30
1
Textbook: California Algebra 2: Concepts, Skills, and Problem Solving
Edition: 1
Author: Berchie Holliday
ISBN: 9780078778568

This textbook survival guide was created for the textbook: California Algebra 2: Concepts, Skills, and Problem Solving, edition: 1. California Algebra 2: Concepts, Skills, and Problem Solving was written by and is associated to the ISBN: 9780078778568. Since 79 problems in chapter 9.1: Exponential Functions have been answered, more than 44291 students have viewed full step-by-step solutions from this chapter. This expansive textbook survival guide covers the following chapters and their solutions. Chapter 9.1: Exponential Functions includes 79 full step-by-step solutions.

Key Math Terms and definitions covered in this textbook
  • Complex conjugate

    z = a - ib for any complex number z = a + ib. Then zz = Iz12.

  • Echelon matrix U.

    The first nonzero entry (the pivot) in each row comes in a later column than the pivot in the previous row. All zero rows come last.

  • Elimination.

    A sequence of row operations that reduces A to an upper triangular U or to the reduced form R = rref(A). Then A = LU with multipliers eO in L, or P A = L U with row exchanges in P, or E A = R with an invertible E.

  • Ellipse (or ellipsoid) x T Ax = 1.

    A must be positive definite; the axes of the ellipse are eigenvectors of A, with lengths 1/.JI. (For IIx II = 1 the vectors y = Ax lie on the ellipse IIA-1 yll2 = Y T(AAT)-1 Y = 1 displayed by eigshow; axis lengths ad

  • Exponential eAt = I + At + (At)2 12! + ...

    has derivative AeAt; eAt u(O) solves u' = Au.

  • Free columns of A.

    Columns without pivots; these are combinations of earlier columns.

  • Full column rank r = n.

    Independent columns, N(A) = {O}, no free variables.

  • Graph G.

    Set of n nodes connected pairwise by m edges. A complete graph has all n(n - 1)/2 edges between nodes. A tree has only n - 1 edges and no closed loops.

  • Indefinite matrix.

    A symmetric matrix with eigenvalues of both signs (+ and - ).

  • Iterative method.

    A sequence of steps intended to approach the desired solution.

  • Left nullspace N (AT).

    Nullspace of AT = "left nullspace" of A because y T A = OT.

  • Length II x II.

    Square root of x T x (Pythagoras in n dimensions).

  • Multiplication Ax

    = Xl (column 1) + ... + xn(column n) = combination of columns.

  • Multiplier eij.

    The pivot row j is multiplied by eij and subtracted from row i to eliminate the i, j entry: eij = (entry to eliminate) / (jth pivot).

  • Norm

    IIA II. The ".e 2 norm" of A is the maximum ratio II Ax II/l1x II = O"max· Then II Ax II < IIAllllxll and IIABII < IIAIIIIBII and IIA + BII < IIAII + IIBII. Frobenius norm IIAII} = L La~. The.e 1 and.e oo norms are largest column and row sums of laij I.

  • Pascal matrix

    Ps = pascal(n) = the symmetric matrix with binomial entries (i1~;2). Ps = PL Pu all contain Pascal's triangle with det = 1 (see Pascal in the index).

  • Projection matrix P onto subspace S.

    Projection p = P b is the closest point to b in S, error e = b - Pb is perpendicularto S. p 2 = P = pT, eigenvalues are 1 or 0, eigenvectors are in S or S...L. If columns of A = basis for S then P = A (AT A) -1 AT.

  • Pseudoinverse A+ (Moore-Penrose inverse).

    The n by m matrix that "inverts" A from column space back to row space, with N(A+) = N(AT). A+ A and AA+ are the projection matrices onto the row space and column space. Rank(A +) = rank(A).

  • Saddle point of I(x}, ... ,xn ).

    A point where the first derivatives of I are zero and the second derivative matrix (a2 II aXi ax j = Hessian matrix) is indefinite.

  • Vandermonde matrix V.

    V c = b gives coefficients of p(x) = Co + ... + Cn_IXn- 1 with P(Xi) = bi. Vij = (Xi)j-I and det V = product of (Xk - Xi) for k > i.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password