×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 5.3: GRAPHS OF POLYNOMIAL FUNCTIONS

College Algebra | 1st Edition | ISBN: 9781938168383 | Authors: Jay Abramson

Full solutions for College Algebra | 1st Edition

ISBN: 9781938168383

College Algebra | 1st Edition | ISBN: 9781938168383 | Authors: Jay Abramson

Solutions for Chapter 5.3: GRAPHS OF POLYNOMIAL FUNCTIONS

Solutions for Chapter 5.3
4 5 0 260 Reviews
15
4
Textbook: College Algebra
Edition: 1
Author: Jay Abramson
ISBN: 9781938168383

This expansive textbook survival guide covers the following chapters and their solutions. College Algebra was written by and is associated to the ISBN: 9781938168383. Chapter 5.3: GRAPHS OF POLYNOMIAL FUNCTIONS includes 79 full step-by-step solutions. Since 79 problems in chapter 5.3: GRAPHS OF POLYNOMIAL FUNCTIONS have been answered, more than 31987 students have viewed full step-by-step solutions from this chapter. This textbook survival guide was created for the textbook: College Algebra, edition: 1.

Key Math Terms and definitions covered in this textbook
  • Complete solution x = x p + Xn to Ax = b.

    (Particular x p) + (x n in nullspace).

  • Covariance matrix:E.

    When random variables Xi have mean = average value = 0, their covariances "'£ ij are the averages of XiX j. With means Xi, the matrix :E = mean of (x - x) (x - x) T is positive (semi)definite; :E is diagonal if the Xi are independent.

  • Echelon matrix U.

    The first nonzero entry (the pivot) in each row comes in a later column than the pivot in the previous row. All zero rows come last.

  • Elimination.

    A sequence of row operations that reduces A to an upper triangular U or to the reduced form R = rref(A). Then A = LU with multipliers eO in L, or P A = L U with row exchanges in P, or E A = R with an invertible E.

  • Free columns of A.

    Columns without pivots; these are combinations of earlier columns.

  • Free variable Xi.

    Column i has no pivot in elimination. We can give the n - r free variables any values, then Ax = b determines the r pivot variables (if solvable!).

  • Left inverse A+.

    If A has full column rank n, then A+ = (AT A)-I AT has A+ A = In.

  • Linear transformation T.

    Each vector V in the input space transforms to T (v) in the output space, and linearity requires T(cv + dw) = c T(v) + d T(w). Examples: Matrix multiplication A v, differentiation and integration in function space.

  • Network.

    A directed graph that has constants Cl, ... , Cm associated with the edges.

  • Nilpotent matrix N.

    Some power of N is the zero matrix, N k = o. The only eigenvalue is A = 0 (repeated n times). Examples: triangular matrices with zero diagonal.

  • Particular solution x p.

    Any solution to Ax = b; often x p has free variables = o.

  • Pascal matrix

    Ps = pascal(n) = the symmetric matrix with binomial entries (i1~;2). Ps = PL Pu all contain Pascal's triangle with det = 1 (see Pascal in the index).

  • Permutation matrix P.

    There are n! orders of 1, ... , n. The n! P 's have the rows of I in those orders. P A puts the rows of A in the same order. P is even or odd (det P = 1 or -1) based on the number of row exchanges to reach I.

  • Plane (or hyperplane) in Rn.

    Vectors x with aT x = O. Plane is perpendicular to a =1= O.

  • Polar decomposition A = Q H.

    Orthogonal Q times positive (semi)definite H.

  • Rank r (A)

    = number of pivots = dimension of column space = dimension of row space.

  • Reflection matrix (Householder) Q = I -2uuT.

    Unit vector u is reflected to Qu = -u. All x intheplanemirroruTx = o have Qx = x. Notice QT = Q-1 = Q.

  • Subspace S of V.

    Any vector space inside V, including V and Z = {zero vector only}.

  • Symmetric factorizations A = LDLT and A = QAQT.

    Signs in A = signs in D.

  • Vector v in Rn.

    Sequence of n real numbers v = (VI, ... , Vn) = point in Rn.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password