×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 9.2: Discrete Mathematics and Its Applications 7th Edition

Discrete Mathematics and Its Applications | 7th Edition | ISBN: 9780073383095 | Authors: Kenneth Rosen

Full solutions for Discrete Mathematics and Its Applications | 7th Edition

ISBN: 9780073383095

Discrete Mathematics and Its Applications | 7th Edition | ISBN: 9780073383095 | Authors: Kenneth Rosen

Solutions for Chapter 9.2

Solutions for Chapter 9.2
4 5 0 245 Reviews
24
4
Textbook: Discrete Mathematics and Its Applications
Edition: 7
Author: Kenneth Rosen
ISBN: 9780073383095

This expansive textbook survival guide covers the following chapters and their solutions. This textbook survival guide was created for the textbook: Discrete Mathematics and Its Applications, edition: 7. Chapter 9.2 includes 28 full step-by-step solutions. Discrete Mathematics and Its Applications was written by and is associated to the ISBN: 9780073383095. Since 28 problems in chapter 9.2 have been answered, more than 197731 students have viewed full step-by-step solutions from this chapter.

Key Math Terms and definitions covered in this textbook
  • Affine transformation

    Tv = Av + Vo = linear transformation plus shift.

  • Cholesky factorization

    A = CTC = (L.J]))(L.J]))T for positive definite A.

  • Circulant matrix C.

    Constant diagonals wrap around as in cyclic shift S. Every circulant is Col + CIS + ... + Cn_lSn - l . Cx = convolution c * x. Eigenvectors in F.

  • Column space C (A) =

    space of all combinations of the columns of A.

  • Covariance matrix:E.

    When random variables Xi have mean = average value = 0, their covariances "'£ ij are the averages of XiX j. With means Xi, the matrix :E = mean of (x - x) (x - x) T is positive (semi)definite; :E is diagonal if the Xi are independent.

  • Diagonalization

    A = S-1 AS. A = eigenvalue matrix and S = eigenvector matrix of A. A must have n independent eigenvectors to make S invertible. All Ak = SA k S-I.

  • Dot product = Inner product x T y = XI Y 1 + ... + Xn Yn.

    Complex dot product is x T Y . Perpendicular vectors have x T y = O. (AB)ij = (row i of A)T(column j of B).

  • Factorization

    A = L U. If elimination takes A to U without row exchanges, then the lower triangular L with multipliers eij (and eii = 1) brings U back to A.

  • Krylov subspace Kj(A, b).

    The subspace spanned by b, Ab, ... , Aj-Ib. Numerical methods approximate A -I b by x j with residual b - Ax j in this subspace. A good basis for K j requires only multiplication by A at each step.

  • Length II x II.

    Square root of x T x (Pythagoras in n dimensions).

  • Linear combination cv + d w or L C jV j.

    Vector addition and scalar multiplication.

  • Normal equation AT Ax = ATb.

    Gives the least squares solution to Ax = b if A has full rank n (independent columns). The equation says that (columns of A)·(b - Ax) = o.

  • Normal matrix.

    If N NT = NT N, then N has orthonormal (complex) eigenvectors.

  • Projection matrix P onto subspace S.

    Projection p = P b is the closest point to b in S, error e = b - Pb is perpendicularto S. p 2 = P = pT, eigenvalues are 1 or 0, eigenvectors are in S or S...L. If columns of A = basis for S then P = A (AT A) -1 AT.

  • Pseudoinverse A+ (Moore-Penrose inverse).

    The n by m matrix that "inverts" A from column space back to row space, with N(A+) = N(AT). A+ A and AA+ are the projection matrices onto the row space and column space. Rank(A +) = rank(A).

  • Random matrix rand(n) or randn(n).

    MATLAB creates a matrix with random entries, uniformly distributed on [0 1] for rand and standard normal distribution for randn.

  • Rank r (A)

    = number of pivots = dimension of column space = dimension of row space.

  • Row picture of Ax = b.

    Each equation gives a plane in Rn; the planes intersect at x.

  • Simplex method for linear programming.

    The minimum cost vector x * is found by moving from comer to lower cost comer along the edges of the feasible set (where the constraints Ax = b and x > 0 are satisfied). Minimum cost at a comer!

  • Spectral Theorem A = QAQT.

    Real symmetric A has real A'S and orthonormal q's.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password