Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Already have an account? Login here
Reset your password

Solutions for Chapter 1.SE: Discrete Mathematics and Its Applications 7th Edition

Discrete Mathematics and Its Applications | 7th Edition | ISBN: 9780073383095 | Authors: Kenneth Rosen

Full solutions for Discrete Mathematics and Its Applications | 7th Edition

ISBN: 9780073383095

Discrete Mathematics and Its Applications | 7th Edition | ISBN: 9780073383095 | Authors: Kenneth Rosen

Solutions for Chapter 1.SE

Solutions for Chapter 1.SE
4 5 0 277 Reviews
Textbook: Discrete Mathematics and Its Applications
Edition: 7
Author: Kenneth Rosen
ISBN: 9780073383095

This expansive textbook survival guide covers the following chapters and their solutions. Chapter 1.SE includes 46 full step-by-step solutions. Discrete Mathematics and Its Applications was written by and is associated to the ISBN: 9780073383095. Since 46 problems in chapter 1.SE have been answered, more than 254793 students have viewed full step-by-step solutions from this chapter. This textbook survival guide was created for the textbook: Discrete Mathematics and Its Applications, edition: 7.

Key Math Terms and definitions covered in this textbook
  • Augmented matrix [A b].

    Ax = b is solvable when b is in the column space of A; then [A b] has the same rank as A. Elimination on [A b] keeps equations correct.

  • Big formula for n by n determinants.

    Det(A) is a sum of n! terms. For each term: Multiply one entry from each row and column of A: rows in order 1, ... , nand column order given by a permutation P. Each of the n! P 's has a + or - sign.

  • Complex conjugate

    z = a - ib for any complex number z = a + ib. Then zz = Iz12.

  • Covariance matrix:E.

    When random variables Xi have mean = average value = 0, their covariances "'£ ij are the averages of XiX j. With means Xi, the matrix :E = mean of (x - x) (x - x) T is positive (semi)definite; :E is diagonal if the Xi are independent.

  • Cyclic shift

    S. Permutation with S21 = 1, S32 = 1, ... , finally SIn = 1. Its eigenvalues are the nth roots e2lrik/n of 1; eigenvectors are columns of the Fourier matrix F.

  • Diagonal matrix D.

    dij = 0 if i #- j. Block-diagonal: zero outside square blocks Du.

  • Dot product = Inner product x T y = XI Y 1 + ... + Xn Yn.

    Complex dot product is x T Y . Perpendicular vectors have x T y = O. (AB)ij = (row i of A)T(column j of B).

  • Echelon matrix U.

    The first nonzero entry (the pivot) in each row comes in a later column than the pivot in the previous row. All zero rows come last.

  • Exponential eAt = I + At + (At)2 12! + ...

    has derivative AeAt; eAt u(O) solves u' = Au.

  • Gram-Schmidt orthogonalization A = QR.

    Independent columns in A, orthonormal columns in Q. Each column q j of Q is a combination of the first j columns of A (and conversely, so R is upper triangular). Convention: diag(R) > o.

  • Hessenberg matrix H.

    Triangular matrix with one extra nonzero adjacent diagonal.

  • Independent vectors VI, .. " vk.

    No combination cl VI + ... + qVk = zero vector unless all ci = O. If the v's are the columns of A, the only solution to Ax = 0 is x = o.

  • Plane (or hyperplane) in Rn.

    Vectors x with aT x = O. Plane is perpendicular to a =1= O.

  • Row picture of Ax = b.

    Each equation gives a plane in Rn; the planes intersect at x.

  • Spectral Theorem A = QAQT.

    Real symmetric A has real A'S and orthonormal q's.

  • Toeplitz matrix.

    Constant down each diagonal = time-invariant (shift-invariant) filter.

  • Triangle inequality II u + v II < II u II + II v II.

    For matrix norms II A + B II < II A II + II B II·

  • Tridiagonal matrix T: tij = 0 if Ii - j I > 1.

    T- 1 has rank 1 above and below diagonal.

  • Unitary matrix UH = U T = U-I.

    Orthonormal columns (complex analog of Q).

  • Wavelets Wjk(t).

    Stretch and shift the time axis to create Wjk(t) = woo(2j t - k).