×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Already have an account? Login here
×
Reset your password

Solutions for Chapter 2.3: Discrete Mathematics and Its Applications 7th Edition

Discrete Mathematics and Its Applications | 7th Edition | ISBN: 9780073383095 | Authors: Kenneth Rosen

Full solutions for Discrete Mathematics and Its Applications | 7th Edition

ISBN: 9780073383095

Discrete Mathematics and Its Applications | 7th Edition | ISBN: 9780073383095 | Authors: Kenneth Rosen

Solutions for Chapter 2.3

Solutions for Chapter 2.3
4 5 0 284 Reviews
19
1
Textbook: Discrete Mathematics and Its Applications
Edition: 7
Author: Kenneth Rosen
ISBN: 9780073383095

Chapter 2.3 includes 80 full step-by-step solutions. Discrete Mathematics and Its Applications was written by and is associated to the ISBN: 9780073383095. Since 80 problems in chapter 2.3 have been answered, more than 255600 students have viewed full step-by-step solutions from this chapter. This expansive textbook survival guide covers the following chapters and their solutions. This textbook survival guide was created for the textbook: Discrete Mathematics and Its Applications, edition: 7.

Key Math Terms and definitions covered in this textbook
  • Circulant matrix C.

    Constant diagonals wrap around as in cyclic shift S. Every circulant is Col + CIS + ... + Cn_lSn - l . Cx = convolution c * x. Eigenvectors in F.

  • Complete solution x = x p + Xn to Ax = b.

    (Particular x p) + (x n in nullspace).

  • Cramer's Rule for Ax = b.

    B j has b replacing column j of A; x j = det B j I det A

  • Determinant IAI = det(A).

    Defined by det I = 1, sign reversal for row exchange, and linearity in each row. Then IAI = 0 when A is singular. Also IABI = IAIIBI and

  • Diagonal matrix D.

    dij = 0 if i #- j. Block-diagonal: zero outside square blocks Du.

  • Gauss-Jordan method.

    Invert A by row operations on [A I] to reach [I A-I].

  • Incidence matrix of a directed graph.

    The m by n edge-node incidence matrix has a row for each edge (node i to node j), with entries -1 and 1 in columns i and j .

  • Jordan form 1 = M- 1 AM.

    If A has s independent eigenvectors, its "generalized" eigenvector matrix M gives 1 = diag(lt, ... , 1s). The block his Akh +Nk where Nk has 1 's on diagonall. Each block has one eigenvalue Ak and one eigenvector.

  • Kronecker product (tensor product) A ® B.

    Blocks aij B, eigenvalues Ap(A)Aq(B).

  • Left inverse A+.

    If A has full column rank n, then A+ = (AT A)-I AT has A+ A = In.

  • Polar decomposition A = Q H.

    Orthogonal Q times positive (semi)definite H.

  • Positive definite matrix A.

    Symmetric matrix with positive eigenvalues and positive pivots. Definition: x T Ax > 0 unless x = O. Then A = LDLT with diag(D» O.

  • Rayleigh quotient q (x) = X T Ax I x T x for symmetric A: Amin < q (x) < Amax.

    Those extremes are reached at the eigenvectors x for Amin(A) and Amax(A).

  • Reflection matrix (Householder) Q = I -2uuT.

    Unit vector u is reflected to Qu = -u. All x intheplanemirroruTx = o have Qx = x. Notice QT = Q-1 = Q.

  • Saddle point of I(x}, ... ,xn ).

    A point where the first derivatives of I are zero and the second derivative matrix (a2 II aXi ax j = Hessian matrix) is indefinite.

  • Sum V + W of subs paces.

    Space of all (v in V) + (w in W). Direct sum: V n W = to}.

  • Tridiagonal matrix T: tij = 0 if Ii - j I > 1.

    T- 1 has rank 1 above and below diagonal.

  • Unitary matrix UH = U T = U-I.

    Orthonormal columns (complex analog of Q).

  • Volume of box.

    The rows (or the columns) of A generate a box with volume I det(A) I.

  • Wavelets Wjk(t).

    Stretch and shift the time axis to create Wjk(t) = woo(2j t - k).