×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Already have an account? Login here
×
Reset your password

Textbooks / Math / Differential Equations and Their Applications: An Introduction to Applied Mathematics 3

Differential Equations and Their Applications: An Introduction to Applied Mathematics 3rd Edition - Solutions by Chapter

Differential Equations and Their Applications: An Introduction to Applied Mathematics | 3rd Edition | ISBN: 9780387908069 | Authors: M. Braun

Full solutions for Differential Equations and Their Applications: An Introduction to Applied Mathematics | 3rd Edition

ISBN: 9780387908069

Differential Equations and Their Applications: An Introduction to Applied Mathematics | 3rd Edition | ISBN: 9780387908069 | Authors: M. Braun

Differential Equations and Their Applications: An Introduction to Applied Mathematics | 3rd Edition - Solutions by Chapter

Solutions by Chapter
4 5 0 411 Reviews
Textbook: Differential Equations and Their Applications: An Introduction to Applied Mathematics
Edition: 3
Author: M. Braun
ISBN: 9780387908069

Since problems from 65 chapters in Differential Equations and Their Applications: An Introduction to Applied Mathematics have been answered, more than 11287 students have viewed full step-by-step answer. This textbook survival guide was created for the textbook: Differential Equations and Their Applications: An Introduction to Applied Mathematics, edition: 3. This expansive textbook survival guide covers the following chapters: 65. The full step-by-step solution to problem in Differential Equations and Their Applications: An Introduction to Applied Mathematics were answered by , our top Math solution expert on 03/13/18, 07:00PM. Differential Equations and Their Applications: An Introduction to Applied Mathematics was written by and is associated to the ISBN: 9780387908069.

Key Math Terms and definitions covered in this textbook
  • Adjacency matrix of a graph.

    Square matrix with aij = 1 when there is an edge from node i to node j; otherwise aij = O. A = AT when edges go both ways (undirected). Adjacency matrix of a graph. Square matrix with aij = 1 when there is an edge from node i to node j; otherwise aij = O. A = AT when edges go both ways (undirected).

  • Basis for V.

    Independent vectors VI, ... , v d whose linear combinations give each vector in V as v = CIVI + ... + CdVd. V has many bases, each basis gives unique c's. A vector space has many bases!

  • Big formula for n by n determinants.

    Det(A) is a sum of n! terms. For each term: Multiply one entry from each row and column of A: rows in order 1, ... , nand column order given by a permutation P. Each of the n! P 's has a + or - sign.

  • Characteristic equation det(A - AI) = O.

    The n roots are the eigenvalues of A.

  • Column space C (A) =

    space of all combinations of the columns of A.

  • Condition number

    cond(A) = c(A) = IIAIlIIA-III = amaxlamin. In Ax = b, the relative change Ilox III Ilx II is less than cond(A) times the relative change Ilob III lib II· Condition numbers measure the sensitivity of the output to change in the input.

  • Diagonal matrix D.

    dij = 0 if i #- j. Block-diagonal: zero outside square blocks Du.

  • Exponential eAt = I + At + (At)2 12! + ...

    has derivative AeAt; eAt u(O) solves u' = Au.

  • Four Fundamental Subspaces C (A), N (A), C (AT), N (AT).

    Use AT for complex A.

  • Matrix multiplication AB.

    The i, j entry of AB is (row i of A)·(column j of B) = L aikbkj. By columns: Column j of AB = A times column j of B. By rows: row i of A multiplies B. Columns times rows: AB = sum of (column k)(row k). All these equivalent definitions come from the rule that A B times x equals A times B x .

  • Multiplication Ax

    = Xl (column 1) + ... + xn(column n) = combination of columns.

  • Network.

    A directed graph that has constants Cl, ... , Cm associated with the edges.

  • Normal equation AT Ax = ATb.

    Gives the least squares solution to Ax = b if A has full rank n (independent columns). The equation says that (columns of A)·(b - Ax) = o.

  • Row space C (AT) = all combinations of rows of A.

    Column vectors by convention.

  • Schwarz inequality

    Iv·wl < IIvll IIwll.Then IvTAwl2 < (vT Av)(wT Aw) for pos def A.

  • Symmetric factorizations A = LDLT and A = QAQT.

    Signs in A = signs in D.

  • Toeplitz matrix.

    Constant down each diagonal = time-invariant (shift-invariant) filter.

  • Trace of A

    = sum of diagonal entries = sum of eigenvalues of A. Tr AB = Tr BA.

  • Tridiagonal matrix T: tij = 0 if Ii - j I > 1.

    T- 1 has rank 1 above and below diagonal.

  • Wavelets Wjk(t).

    Stretch and shift the time axis to create Wjk(t) = woo(2j t - k).