 1.14.1: Using the three term Taylor series method with h = 0.1, determine a...
 1.14.2: Using the three term Taylor series method with h = 0.1, determine a...
 1.14.3: Using the three term Taylor series method with h = 0.1, determine a...
 1.14.4: Using the three term Taylor series method with h = 0.1, determine a...
 1.14.5: Using the three term Taylor series method with h = 0.1, determine a...
 1.14.6: Using the three term Taylor series method with h = n/40, determine ...
Solutions for Chapter 1.14: The three term Taylor series method
Full solutions for Differential Equations and Their Applications: An Introduction to Applied Mathematics  3rd Edition
ISBN: 9780387908069
Solutions for Chapter 1.14: The three term Taylor series method
Get Full SolutionsChapter 1.14: The three term Taylor series method includes 6 full stepbystep solutions. This textbook survival guide was created for the textbook: Differential Equations and Their Applications: An Introduction to Applied Mathematics, edition: 3. Since 6 problems in chapter 1.14: The three term Taylor series method have been answered, more than 6514 students have viewed full stepbystep solutions from this chapter. This expansive textbook survival guide covers the following chapters and their solutions. Differential Equations and Their Applications: An Introduction to Applied Mathematics was written by and is associated to the ISBN: 9780387908069.

Condition number
cond(A) = c(A) = IIAIlIIAIII = amaxlamin. In Ax = b, the relative change Ilox III Ilx II is less than cond(A) times the relative change Ilob III lib II· Condition numbers measure the sensitivity of the output to change in the input.

Conjugate Gradient Method.
A sequence of steps (end of Chapter 9) to solve positive definite Ax = b by minimizing !x T Ax  x Tb over growing Krylov subspaces.

Cyclic shift
S. Permutation with S21 = 1, S32 = 1, ... , finally SIn = 1. Its eigenvalues are the nth roots e2lrik/n of 1; eigenvectors are columns of the Fourier matrix F.

Diagonal matrix D.
dij = 0 if i # j. Blockdiagonal: zero outside square blocks Du.

Fourier matrix F.
Entries Fjk = e21Cijk/n give orthogonal columns FT F = nI. Then y = Fe is the (inverse) Discrete Fourier Transform Y j = L cke21Cijk/n.

Fundamental Theorem.
The nullspace N (A) and row space C (AT) are orthogonal complements in Rn(perpendicular from Ax = 0 with dimensions rand n  r). Applied to AT, the column space C(A) is the orthogonal complement of N(AT) in Rm.

Hankel matrix H.
Constant along each antidiagonal; hij depends on i + j.

Identity matrix I (or In).
Diagonal entries = 1, offdiagonal entries = 0.

Incidence matrix of a directed graph.
The m by n edgenode incidence matrix has a row for each edge (node i to node j), with entries 1 and 1 in columns i and j .

Least squares solution X.
The vector x that minimizes the error lie 112 solves AT Ax = ATb. Then e = b  Ax is orthogonal to all columns of A.

Linear combination cv + d w or L C jV j.
Vector addition and scalar multiplication.

Minimal polynomial of A.
The lowest degree polynomial with meA) = zero matrix. This is peA) = det(A  AI) if no eigenvalues are repeated; always meA) divides peA).

Nullspace N (A)
= All solutions to Ax = O. Dimension n  r = (# columns)  rank.

Permutation matrix P.
There are n! orders of 1, ... , n. The n! P 's have the rows of I in those orders. P A puts the rows of A in the same order. P is even or odd (det P = 1 or 1) based on the number of row exchanges to reach I.

Positive definite matrix A.
Symmetric matrix with positive eigenvalues and positive pivots. Definition: x T Ax > 0 unless x = O. Then A = LDLT with diag(D» O.

Rayleigh quotient q (x) = X T Ax I x T x for symmetric A: Amin < q (x) < Amax.
Those extremes are reached at the eigenvectors x for Amin(A) and Amax(A).

Spectrum of A = the set of eigenvalues {A I, ... , An}.
Spectral radius = max of IAi I.

Subspace S of V.
Any vector space inside V, including V and Z = {zero vector only}.

Triangle inequality II u + v II < II u II + II v II.
For matrix norms II A + B II < II A II + II B II·

Vandermonde matrix V.
V c = b gives coefficients of p(x) = Co + ... + Cn_IXn 1 with P(Xi) = bi. Vij = (Xi)jI and det V = product of (Xk  Xi) for k > i.