×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 2.7: A model for the detection of diabetes

Differential Equations and Their Applications: An Introduction to Applied Mathematics | 3rd Edition | ISBN: 9780387908069 | Authors: M. Braun

Full solutions for Differential Equations and Their Applications: An Introduction to Applied Mathematics | 3rd Edition

ISBN: 9780387908069

Differential Equations and Their Applications: An Introduction to Applied Mathematics | 3rd Edition | ISBN: 9780387908069 | Authors: M. Braun

Solutions for Chapter 2.7: A model for the detection of diabetes

Solutions for Chapter 2.7
4 5 0 245 Reviews
26
1

Differential Equations and Their Applications: An Introduction to Applied Mathematics was written by and is associated to the ISBN: 9780387908069. This textbook survival guide was created for the textbook: Differential Equations and Their Applications: An Introduction to Applied Mathematics, edition: 3. This expansive textbook survival guide covers the following chapters and their solutions. Chapter 2.7: A model for the detection of diabetes includes 4 full step-by-step solutions. Since 4 problems in chapter 2.7: A model for the detection of diabetes have been answered, more than 5865 students have viewed full step-by-step solutions from this chapter.

Key Math Terms and definitions covered in this textbook
  • Augmented matrix [A b].

    Ax = b is solvable when b is in the column space of A; then [A b] has the same rank as A. Elimination on [A b] keeps equations correct.

  • Big formula for n by n determinants.

    Det(A) is a sum of n! terms. For each term: Multiply one entry from each row and column of A: rows in order 1, ... , nand column order given by a permutation P. Each of the n! P 's has a + or - sign.

  • Change of basis matrix M.

    The old basis vectors v j are combinations L mij Wi of the new basis vectors. The coordinates of CI VI + ... + cnvn = dl wI + ... + dn Wn are related by d = M c. (For n = 2 set VI = mll WI +m21 W2, V2 = m12WI +m22w2.)

  • Circulant matrix C.

    Constant diagonals wrap around as in cyclic shift S. Every circulant is Col + CIS + ... + Cn_lSn - l . Cx = convolution c * x. Eigenvectors in F.

  • Elimination.

    A sequence of row operations that reduces A to an upper triangular U or to the reduced form R = rref(A). Then A = LU with multipliers eO in L, or P A = L U with row exchanges in P, or E A = R with an invertible E.

  • Free columns of A.

    Columns without pivots; these are combinations of earlier columns.

  • Lucas numbers

    Ln = 2,J, 3, 4, ... satisfy Ln = L n- l +Ln- 2 = A1 +A~, with AI, A2 = (1 ± -/5)/2 from the Fibonacci matrix U~]' Compare Lo = 2 with Fo = O.

  • Minimal polynomial of A.

    The lowest degree polynomial with meA) = zero matrix. This is peA) = det(A - AI) if no eigenvalues are repeated; always meA) divides peA).

  • Network.

    A directed graph that has constants Cl, ... , Cm associated with the edges.

  • Normal equation AT Ax = ATb.

    Gives the least squares solution to Ax = b if A has full rank n (independent columns). The equation says that (columns of A)·(b - Ax) = o.

  • Nullspace matrix N.

    The columns of N are the n - r special solutions to As = O.

  • Outer product uv T

    = column times row = rank one matrix.

  • Pivot.

    The diagonal entry (first nonzero) at the time when a row is used in elimination.

  • Projection matrix P onto subspace S.

    Projection p = P b is the closest point to b in S, error e = b - Pb is perpendicularto S. p 2 = P = pT, eigenvalues are 1 or 0, eigenvectors are in S or S...L. If columns of A = basis for S then P = A (AT A) -1 AT.

  • Row picture of Ax = b.

    Each equation gives a plane in Rn; the planes intersect at x.

  • Spanning set.

    Combinations of VI, ... ,Vm fill the space. The columns of A span C (A)!

  • Symmetric matrix A.

    The transpose is AT = A, and aU = a ji. A-I is also symmetric.

  • Toeplitz matrix.

    Constant down each diagonal = time-invariant (shift-invariant) filter.

  • Vandermonde matrix V.

    V c = b gives coefficients of p(x) = Co + ... + Cn_IXn- 1 with P(Xi) = bi. Vij = (Xi)j-I and det V = product of (Xk - Xi) for k > i.

  • Vector addition.

    v + w = (VI + WI, ... , Vn + Wn ) = diagonal of parallelogram.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password