×
Log in to StudySoup

Forgot password? Reset password here

> > Discovering Algebra: An Investigative Approach 2

Discovering Algebra: An Investigative Approach 2nd Edition - Solutions by Chapter

Discovering Algebra: An Investigative Approach | 2nd Edition | ISBN: 9781559537636 | Authors: Jerald Murdock, Ellen Kamischke, Eric Kamischke

Full solutions for Discovering Algebra: An Investigative Approach | 2nd Edition

ISBN: 9781559537636

Discovering Algebra: An Investigative Approach | 2nd Edition | ISBN: 9781559537636 | Authors: Jerald Murdock, Ellen Kamischke, Eric Kamischke

Discovering Algebra: An Investigative Approach | 2nd Edition - Solutions by Chapter

Solutions by Chapter
4 5 0 333 Reviews
Textbook: Discovering Algebra: An Investigative Approach
Edition: 2
Author: Jerald Murdock, Ellen Kamischke, Eric Kamischke
ISBN: 9781559537636

This expansive textbook survival guide covers the following chapters: 90. This textbook survival guide was created for the textbook: Discovering Algebra: An Investigative Approach, edition: 2. Since problems from 90 chapters in Discovering Algebra: An Investigative Approach have been answered, more than 5275 students have viewed full step-by-step answer. Discovering Algebra: An Investigative Approach was written by and is associated to the ISBN: 9781559537636. The full step-by-step solution to problem in Discovering Algebra: An Investigative Approach were answered by , our top Math solution expert on 03/13/18, 07:06PM.

Key Math Terms and definitions covered in this textbook
  • Affine transformation

    Tv = Av + Vo = linear transformation plus shift.

  • Commuting matrices AB = BA.

    If diagonalizable, they share n eigenvectors.

  • Companion matrix.

    Put CI, ... ,Cn in row n and put n - 1 ones just above the main diagonal. Then det(A - AI) = ±(CI + c2A + C3A 2 + .•. + cnA n-l - An).

  • Cramer's Rule for Ax = b.

    B j has b replacing column j of A; x j = det B j I det A

  • Dimension of vector space

    dim(V) = number of vectors in any basis for V.

  • Fast Fourier Transform (FFT).

    A factorization of the Fourier matrix Fn into e = log2 n matrices Si times a permutation. Each Si needs only nl2 multiplications, so Fnx and Fn-1c can be computed with ne/2 multiplications. Revolutionary.

  • Hankel matrix H.

    Constant along each antidiagonal; hij depends on i + j.

  • Iterative method.

    A sequence of steps intended to approach the desired solution.

  • Kirchhoff's Laws.

    Current Law: net current (in minus out) is zero at each node. Voltage Law: Potential differences (voltage drops) add to zero around any closed loop.

  • Least squares solution X.

    The vector x that minimizes the error lie 112 solves AT Ax = ATb. Then e = b - Ax is orthogonal to all columns of A.

  • Markov matrix M.

    All mij > 0 and each column sum is 1. Largest eigenvalue A = 1. If mij > 0, the columns of Mk approach the steady state eigenvector M s = s > O.

  • Multiplicities AM and G M.

    The algebraic multiplicity A M of A is the number of times A appears as a root of det(A - AI) = O. The geometric multiplicity GM is the number of independent eigenvectors for A (= dimension of the eigenspace).

  • Normal equation AT Ax = ATb.

    Gives the least squares solution to Ax = b if A has full rank n (independent columns). The equation says that (columns of A)·(b - Ax) = o.

  • Nullspace N (A)

    = All solutions to Ax = O. Dimension n - r = (# columns) - rank.

  • Orthonormal vectors q 1 , ... , q n·

    Dot products are q T q j = 0 if i =1= j and q T q i = 1. The matrix Q with these orthonormal columns has Q T Q = I. If m = n then Q T = Q -1 and q 1 ' ... , q n is an orthonormal basis for Rn : every v = L (v T q j )q j •

  • Polar decomposition A = Q H.

    Orthogonal Q times positive (semi)definite H.

  • Rank r (A)

    = number of pivots = dimension of column space = dimension of row space.

  • Schur complement S, D - C A -} B.

    Appears in block elimination on [~ g ].

  • Trace of A

    = sum of diagonal entries = sum of eigenvalues of A. Tr AB = Tr BA.

  • Unitary matrix UH = U T = U-I.

    Orthonormal columns (complex analog of Q).

×
Log in to StudySoup
Get Full Access to Thousands of Study Materials at Your School

Forgot password? Reset password here

Join StudySoup for FREE
Get Full Access to Thousands of Study Materials at Your School
Join with Email
Already have an account? Login here
Reset your password

I don't want to reset my password

Need an Account? Is not associated with an account
Sign up
We're here to help

Having trouble accessing your account? Let us help you, contact support at +1(510) 944-1054 or support@studysoup.com

Got it, thanks!
Password Reset Request Sent An email has been sent to the email address associated to your account. Follow the link in the email to reset your password. If you're having trouble finding our email please check your spam folder
Got it, thanks!
Already have an Account? Is already in use
Log in
Incorrect Password The password used to log in with this account is incorrect
Try Again

Forgot password? Reset it here