×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 6.4: Scientific Notation for Large Numbers

Discovering Algebra: An Investigative Approach | 2nd Edition | ISBN: 9781559537636 | Authors: Jerald Murdock, Ellen Kamischke, Eric Kamischke

Full solutions for Discovering Algebra: An Investigative Approach | 2nd Edition

ISBN: 9781559537636

Discovering Algebra: An Investigative Approach | 2nd Edition | ISBN: 9781559537636 | Authors: Jerald Murdock, Ellen Kamischke, Eric Kamischke

Solutions for Chapter 6.4: Scientific Notation for Large Numbers

This textbook survival guide was created for the textbook: Discovering Algebra: An Investigative Approach, edition: 2. This expansive textbook survival guide covers the following chapters and their solutions. Discovering Algebra: An Investigative Approach was written by and is associated to the ISBN: 9781559537636. Chapter 6.4: Scientific Notation for Large Numbers includes 15 full step-by-step solutions. Since 15 problems in chapter 6.4: Scientific Notation for Large Numbers have been answered, more than 5931 students have viewed full step-by-step solutions from this chapter.

Key Math Terms and definitions covered in this textbook
  • Circulant matrix C.

    Constant diagonals wrap around as in cyclic shift S. Every circulant is Col + CIS + ... + Cn_lSn - l . Cx = convolution c * x. Eigenvectors in F.

  • Cofactor Cij.

    Remove row i and column j; multiply the determinant by (-I)i + j •

  • Commuting matrices AB = BA.

    If diagonalizable, they share n eigenvectors.

  • Covariance matrix:E.

    When random variables Xi have mean = average value = 0, their covariances "'£ ij are the averages of XiX j. With means Xi, the matrix :E = mean of (x - x) (x - x) T is positive (semi)definite; :E is diagonal if the Xi are independent.

  • Dot product = Inner product x T y = XI Y 1 + ... + Xn Yn.

    Complex dot product is x T Y . Perpendicular vectors have x T y = O. (AB)ij = (row i of A)T(column j of B).

  • Echelon matrix U.

    The first nonzero entry (the pivot) in each row comes in a later column than the pivot in the previous row. All zero rows come last.

  • Ellipse (or ellipsoid) x T Ax = 1.

    A must be positive definite; the axes of the ellipse are eigenvectors of A, with lengths 1/.JI. (For IIx II = 1 the vectors y = Ax lie on the ellipse IIA-1 yll2 = Y T(AAT)-1 Y = 1 displayed by eigshow; axis lengths ad

  • Fibonacci numbers

    0,1,1,2,3,5, ... satisfy Fn = Fn-l + Fn- 2 = (A7 -A~)I()q -A2). Growth rate Al = (1 + .J5) 12 is the largest eigenvalue of the Fibonacci matrix [ } A].

  • Gauss-Jordan method.

    Invert A by row operations on [A I] to reach [I A-I].

  • Hankel matrix H.

    Constant along each antidiagonal; hij depends on i + j.

  • Incidence matrix of a directed graph.

    The m by n edge-node incidence matrix has a row for each edge (node i to node j), with entries -1 and 1 in columns i and j .

  • Indefinite matrix.

    A symmetric matrix with eigenvalues of both signs (+ and - ).

  • Iterative method.

    A sequence of steps intended to approach the desired solution.

  • Linear combination cv + d w or L C jV j.

    Vector addition and scalar multiplication.

  • Linear transformation T.

    Each vector V in the input space transforms to T (v) in the output space, and linearity requires T(cv + dw) = c T(v) + d T(w). Examples: Matrix multiplication A v, differentiation and integration in function space.

  • Pivot columns of A.

    Columns that contain pivots after row reduction. These are not combinations of earlier columns. The pivot columns are a basis for the column space.

  • Random matrix rand(n) or randn(n).

    MATLAB creates a matrix with random entries, uniformly distributed on [0 1] for rand and standard normal distribution for randn.

  • Row space C (AT) = all combinations of rows of A.

    Column vectors by convention.

  • Schur complement S, D - C A -} B.

    Appears in block elimination on [~ g ].

  • Similar matrices A and B.

    Every B = M-I AM has the same eigenvalues as A.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password