×
×

# Solutions for Chapter 9.1: Solving Quadratic Equations

## Full solutions for Discovering Algebra: An Investigative Approach | 2nd Edition

ISBN: 9781559537636

Solutions for Chapter 9.1: Solving Quadratic Equations

Solutions for Chapter 9.1
4 5 0 346 Reviews
20
4
##### ISBN: 9781559537636

Since 12 problems in chapter 9.1: Solving Quadratic Equations have been answered, more than 9673 students have viewed full step-by-step solutions from this chapter. Discovering Algebra: An Investigative Approach was written by and is associated to the ISBN: 9781559537636. This textbook survival guide was created for the textbook: Discovering Algebra: An Investigative Approach, edition: 2. This expansive textbook survival guide covers the following chapters and their solutions. Chapter 9.1: Solving Quadratic Equations includes 12 full step-by-step solutions.

Key Math Terms and definitions covered in this textbook
• Block matrix.

A matrix can be partitioned into matrix blocks, by cuts between rows and/or between columns. Block multiplication ofAB is allowed if the block shapes permit.

• Determinant IAI = det(A).

Defined by det I = 1, sign reversal for row exchange, and linearity in each row. Then IAI = 0 when A is singular. Also IABI = IAIIBI and

• Echelon matrix U.

The first nonzero entry (the pivot) in each row comes in a later column than the pivot in the previous row. All zero rows come last.

• Factorization

A = L U. If elimination takes A to U without row exchanges, then the lower triangular L with multipliers eij (and eii = 1) brings U back to A.

• Indefinite matrix.

A symmetric matrix with eigenvalues of both signs (+ and - ).

• Krylov subspace Kj(A, b).

The subspace spanned by b, Ab, ... , Aj-Ib. Numerical methods approximate A -I b by x j with residual b - Ax j in this subspace. A good basis for K j requires only multiplication by A at each step.

• Length II x II.

Square root of x T x (Pythagoras in n dimensions).

• Linearly dependent VI, ... , Vn.

A combination other than all Ci = 0 gives L Ci Vi = O.

• Norm

IIA II. The ".e 2 norm" of A is the maximum ratio II Ax II/l1x II = O"max· Then II Ax II < IIAllllxll and IIABII < IIAIIIIBII and IIA + BII < IIAII + IIBII. Frobenius norm IIAII} = L La~. The.e 1 and.e oo norms are largest column and row sums of laij I.

• Pivot columns of A.

Columns that contain pivots after row reduction. These are not combinations of earlier columns. The pivot columns are a basis for the column space.

• Polar decomposition A = Q H.

Orthogonal Q times positive (semi)definite H.

• Rayleigh quotient q (x) = X T Ax I x T x for symmetric A: Amin < q (x) < Amax.

Those extremes are reached at the eigenvectors x for Amin(A) and Amax(A).

• Row picture of Ax = b.

Each equation gives a plane in Rn; the planes intersect at x.

• Schur complement S, D - C A -} B.

Appears in block elimination on [~ g ].

• Similar matrices A and B.

Every B = M-I AM has the same eigenvalues as A.

• Special solutions to As = O.

One free variable is Si = 1, other free variables = o.

• Sum V + W of subs paces.

Space of all (v in V) + (w in W). Direct sum: V n W = to}.

• Symmetric factorizations A = LDLT and A = QAQT.

Signs in A = signs in D.

• Triangle inequality II u + v II < II u II + II v II.

For matrix norms II A + B II < II A II + II B II·

• Vector space V.

Set of vectors such that all combinations cv + d w remain within V. Eight required rules are given in Section 3.1 for scalars c, d and vectors v, w.

×